Using types to rule out bugs:
Python perspective

Dominic Orchard

S9N\ Institute of University of

Computing for I<
Climate Science (5 I lt

Intermediate Research Software Development Skills In Python for Earth Sciences - Manchester, 19th March 2024

https://iccs.cam.ac.uk

NIVERSITY OF .i'»\ nstite of
AMBRIDGE

Climate Science

3 RO
(> L/L

Mathematics

Computer Science I

Software Engineering

Climate Science
Data Science

Machine Learning I

High Performance Computing I

https://iccs.cam.ac.uk

Institute of Computing for Climate Science (ICCS)

@instituteofcomputingforcli3982 - 255 subscribers - 56 videos

\ ol

The Institute of Computing for Climate Science studies and supports the role of software e...

cambridge-iccs.github.io and 7 more links

Q Subscribed

Home Videos Podcasts Playlists Community

Created playlists

%g UNIVERSITY OF
¥ CAMBRIDGE

Research Software Engineering Seminars

rsegroup.cam.ac.uk

22nd February 2024

Pydantic: A Package for Picky Pythan Bcogramm el
RSE Paul Sharp o
Rutherford Appleton Lab :’ 1 2 V|deos

(@) 1 episode

Working inside the Institute of Training

Cambridge University RSE
Computing for Climate Science

Seminars
View full playlist

View full playlist View full podcast

85 UNIVERSETY OF ("' Skay ol +L_‘N.‘-:I»‘.!~Il'j‘_t"l ('-'a \ bohexel . , .
1" CAMBRIDGE V8 ¥ 403 51 0ree W CAMBRIDGE @ SSbren e cural network emulter G be put iste the leepa ck model, where it
without drifes or Instabilties (contrast linzar regression emclator),

FourCastNet pushing the frontier of Al-Driven
Digital Twins

s - A UNIVERSETY OF
(‘. e T CAMBRINGE

ICCS Summer School 2023

N
107 - 149 Jay o -

=» 21 videos =y 37 videos

Climate Informatics 2023 -
Virtual Posters

Climate Informatics 2023
Presentations

ICCS Summer School 2023

View full playlist

View full playlist View full playlist

=y 1 video

>

Il =, 3videos

Who We Are

Presentations

View full playlist

BNE UNIVERSITY OF Inuear
:lL";Cl‘\l\'{BRII)GE t‘”‘ :tc‘?’("‘ LI'—‘

Comiddge Tae Dazerwent of Acpiad
“CST Metuand Thaa resaal

ICCS SUMMER SCHOOL 2022

View full playlist

View full playlist

Cceanic Vertical Mixing: Diffusive Modelling?

(W'}
* Key Quasoon How to model vertical dfsswicy of heae &y = “‘“ - B oy
~ oz N

* Azsume that it cam be descrded a5 an eddy sty wing buoyancy zncy N
o . e

g

ooy B
-

Cross-VESRI Journal Club
Presents:

View full playlist

Virtual Earth System Research

Institute (VESRI)

LEMONTREE: Land Ecosystem
Models based On New Theory,

DataWave: Collaborative obseRvations, and ExperimEnts

Gravity Wave Research

\ Institute of

Computing for
Plants, Soils and Oceans ‘ Climate Science /

CALIPSO: Carbon Loss In t FETCH, FETCH,: Fate, Emissions,

& - and Transport of CH,

LIPS

M2LInES: Multiscale Machine
Learning In Coupled Earth
System Modeling

SCHMIDT FUTURES

SASIP: The Scale-
Aware Sea Ice Project

Using types to rule out bugs:
Python perspective

Dominic Orchard

S9N\ Institute of University of

Computing for I<
Climate Science (5 I lt

Intermediate Research Software Development Skills In Python for Earth Sciences - Manchester, 19th March 2024

Warmup!

1 +1 =2
"hello” + 1 = "hellol™ JS
= “1ello" Hok asm
= "hellp" 77!
"hello" * 2 = "hellohello" ¢ python

"hello" / 2

2?77? &

Types communicate to us what
the computer can do

Learning objectives

 Understand key ideas behind specification and verification
* Understand some key concepts and terminology behind types
* Learn about the mypy tool for typing in Python

* Develop ability to use types to avoid bugs and write code more effectively

Validation
Did we implement the right equations?

VS

Verification
Did we implement the equations right?

Challenge

Telling these two apart when results are not as expected

Terminology: what does “verified” mean?

Verification wrt. a specification
i.e. check(implementation, specification)

. validation is verification

where specification =)Xobservation

The value of a specification is what we make of it;
it depends on our goals and values

How much verification?

* [ots of verification techniques out there:
® Testing
® ‘|ype systems
* Deductive verification
e Static analysis
® Interactive theorem provers

* Modelling and model checking

e How much to use?

11

How much verification?
“Lightweight Formal Methods” (Jackson, Wing, 1996)

"...except in safety-critical work, the cost of full verification is
prohibitive and early detection of errors is a more realistic goal.

There can be no point embarking on the construction of a
specification until it is known exactly what the specification is for;
which risks it is intended to mitigate; and in which respects it will
inevitably prove inadequate."

Today we will mitigate against data errors

12

A helpful model: types as sets

e Set defined by its elements (data), e.g.,

» N - Natural numbers {1,2, ...} or{0,1,2, ...} depending who you ask!

» Z -Integers {...,=2,—-1,0,1,2, ...}
» R - Real numbers {...,0,0.1,0.11,...,e, ..., 7, ...

j

e Sets of pairs of A and B written A X B (Cartesian product)

r e.g, NXN = {(1,1),(1,2),(2,1),(2,2), ...}

e Functions from A to B written A — B

» e.g. abs:Z — N

X |

Notational convention
expression . type

type signature / specification

Dynamic typing
@, python

Static typing VS.

e Compiler first does type checking * No pre-run checks
e Jll-typed programs rejected e Data stored with type information
» Intrinsic typing - Ill-typed * Operations check type information
programs have no meaning
(cannot be run) ® Errors occur “as it happens”

e Well-typed programs compiled,
using types for optimisation

* Today: we will use mypy to add static typing to Python

14

Without types?

e E.g., in assembly languages

® One type = bits!
e Lverything works / operations may not do what you want

® Developer has to track meaning themselves

15

Types eliminate a class of bugs

“Well typed programs cannot go wrong”
(Milner, 1978)

(For some definition of wrong!)

16

A

mypy

An optional gradual, static type system for Python

* Gradually convert from dynamic to static typing

e Optional = extrinsic typing - ill-typed programs can still run (have meaning)

* Maths-like type signatures

flag : bool = True

def plus(x : int, y : int) —> int:
return x + vy

17

Getting mypy (if you want to ‘code along’) P

python3 —m pip 1nstall mypy
Or possibly:

python —m pip install mypy

mypy == Y
r Type checking for Python using mypy
2 . &
You may want to use the .
vscode extension Mypy Type Checker D6ms
—’ P Type checking support for Python files using ...
2 Microsoft $o3

18

Mypy/Python primitive types

it def greet(name: str) —> None:
in print("Hi " + name)

bool

float

Str

None (no result type)

Any (fall-back, anything)

A

19

Type constructors

Like type functions: create a type from other types
e For some type t then list[t] captures lists of elements (all) of type t

def greet_all(names: list[str]) —> None:
for name 1n names:

print('Hello ' + name)

cf. A X B notation on sets

e tuple[tl, t2, ..l captures tuples with elements of type t1, t2, etc.

some_data : tuplel[int, bool, str]l = (42, True, “Manchester")

20

Type constructors

Like type functions: create a type from other types

e dictlk, v captures records/dictionaries of key k and value v type:

x: dict[str, float] = {"fieldl": 2.0, "field2": 3.0}

e t1 | t2 captures either type tl or t2 type (Python 3.10 <= Union[tl, t2])

def myDiv(x : float, y : float) —> (float | None):
if y '= 0: return x / vy
else: return None

21

Type constructors and classes

Every class name is a type constructor

e.qd.,

class Comp lex:
def __init_ (self, realpart, imagpart):
self.r realpart
self.1 = 1magpart

h : Complex = Complex(3.0, -4.5)

22

Querying mypy

Ask mypy what it thinks the type is:

reveal_type(expression)

If you need to run too, hide reveal_type from runtime:

from typing import TYPE_CHECKING

1T TYPE CHECKING:
reveal _type(dl)

23

Subtyping

e In theory literature, A is a subtype of B written A :< B (think subsets)

@ « Example: list [t] is a “subtype” of Iterable[t]

e Can pass arguments of a subtype to a function
x:A f:B->C A< B
f(x): C

def greet_all(names: Iterable[str]) —> None:
for name 1n names:
print('Hello ' + name)

e.g.

names = ["Alice", "Brijesh", "Chenxi"]
greet_all(names)

24

Polymorphism

(Also known as generic types)

e Consider the function

def first(xs : list[str]) —> str:
return xs[0]

e What if we want to use it with list[int] too?

def first int(XS : list[int]) —> int:
return xs[0]

* Duplication bad for maintenance and understanding

25

Polymorphism

(Also known as generic types)

e Solution: generalise to any element type T

T = TypeVar('T")

def first(xs : list[typelTl]) —> typelT]:
return xs[0]

* (Note: requires an import)

from typing import TypeVar, Generic

26

“Free theorems” follow from polymorphic types

* Consider def someFun(XS : list[typel[T]l]) —> typelT]

e “Universality” of T tells us we cannot inspect or compute with the T elements

* Implies the following (“naturality”) property:

someFun(list(map(f, x))) = f(someFun(x))

someFun Note the right
list[type[T]] » type[t] expression applies T
once, the left applies
list(map(f,_)) f it len(x) times.
list[type[S]] ., typels] .". Optimisation!
somekFun

27

Function types

e.d., for typing higher-order functions

For a function with n-inputs (n-ary) A1 to An and return type B:

Callable[[Al,... ,An], B] cf. A — B notation on sets
e.g.,

from typing import Callable

S = TypeVar('S")

T = TypeVar('T")

def memo(f : Callable[[S], T], x : S) —> tuplelS,T]:
return (x, f(x))

28

Escape hatch!

* A type checker T is complete if, for all programs P then T(P) is true

* Most type checkers are incomplete = some valid programs rejected

* Python has an escape hatch:

borked = 0 / "hello" # type: ignore

Does not raise a type checking error (though it clearly should)

29

mypy and NumPy

Types for external libraries

Can use the class names already for numpy, e.g.,

import numpy as np
myArray : np.ndarray = np.ndarray(shape=(2,2), dtype=float)

30

https://numpy.org/devdocs/reference/typing.html

mypy and NumPy

Types for external libraries
import numpy.typing as npt

provides
 ArrayLike - objects that can be converted to arrays
» DTypelike - objects that can be converted to dtypes

* NDArrayI[T] - numpy arrays of T values

h

Needs local config, e.g., viamypy.1inl

[mypy]

plugins = numpy.typing.mypy_plugin
31

https://numpy.org/devdocs/reference/typing.html

mypy and NumPy

Types for external libraries

e.g.

import numpy as np
import numpy.typing as npt

def as_array(a: npt.ArrayLike) —> np.ndarray:
return np.array(a)

def scale_array(a: float, arr: npt.NDArrayl[np.float64]) —> npt.NDArrayl[np.float64]:
return askarr

32

Coming into land....
What did we learn?

e Understand key ideas behind specification and verification

* Understand some key concepts and terminology behind types
* “Sets” model
e Static vs dynamic
e EXtrinsic vs intrinsic
e Subtyping

® Polymorphism

33

Coming into land....
What did we learn?

* Learn about the mypy tool for typing in Python
®* mypy gives us extrinsic static typing

* Develop ability to use types to avoid bugs and write code more effectively
* Go and practice on your own (see worksheet!)

e Start using i1n projects

34

Worksheet

https://dorchard.github.io/types-tutorial/mypy-worksheet.pdf

==

L S

[m] 5y

Hi
L X
p%.‘f“'ﬂlﬁ_

[=]

35

https://dorchard.github.io/types-tutorial/mypy-worksheet.pdf

Thanks- and happy typing!

“
" https://iccs.cam.ac.uk

@ https://dorchard.github.io

@ types.pl/@dorchard

y @dorchard

36

https://dorchard.github.io
https://iccs.cam.ac.uk

VScode mypy plugin woes?

No errors appear

» Check mypy
- Explicitly set path to mypy

% which mypy

/opt/homebrew/bin/mypy

* Then edit settings.json, adding, e.g.:

"mypy—-type-checker.path": ["/opt/homebrew/bin/mypy"]

37

