
Intermediate Research Software Development Skills In Python for Earth Sciences - Manchester, 19th March 2024

Using types to rule out bugs:
Python perspective

Dominic Orchard

2

https://iccs.cam.ac.uk

https://iccs.cam.ac.uk

4

Intermediate Research Software Development Skills In Python for Earth Sciences - Manchester, 19th March 2024

Using types to rule out bugs:
Python perspective

Dominic Orchard

"hello" + 1

1 + 1 = 2

= "hello1"

= "hellp"

"hello" * 2 = "hellohello"

"hello" / 2 = ??? 🤔

Warmup!

6

= “iello" asm

??!

Types communicate to us what
the computer can do

7

Learning objectives

• Understand key ideas behind specification and verification

• Understand some key concepts and terminology behind types

• Learn about the mypy tool for typing in Python

• Develop ability to use types to avoid bugs and write code more effectively

8

Did we implement the right equations?
Validation

Challenge
Telling these two apart when results are not as expected

Verification
vs

Did we implement the equations right?

 validation is verification
 where specification observation
∴

≜ ≈

Terminology: what does “verified” mean?

Verification wrt. a specification
𝖼𝗁𝖾𝖼𝗄(implementation, specification)i.e.

10

The value of a specification is what we make of it;
it depends on our goals and values

How much verification?

11

• Lots of verification techniques out there:

• Testing

• Type systems

• Deductive verification

• Static analysis

• Interactive theorem provers

• Modelling and model checking

• How much to use?

How much verification?

12

"...except in safety-critical work, the cost of full verification is
prohibitive and early detection of errors is a more realistic goal.

There can be no point embarking on the construction of a
specification until it is known exactly what the specification is for;
which risks it is intended to mitigate; and in which respects it will
inevitably prove inadequate."

“Lightweight Formal Methods” (Jackson, Wing, 1996)

Today we will mitigate against data errors

A helpful model: types as sets
• Set defined by its elements (data), e.g.,
‣ - Natural numbers
‣ - Integers
‣ - Real numbers

• Sets of pairs of and written (Cartesian product)

‣ e.g.,

• Functions from to written

‣ e.g.

‣

‣ + :

ℕ {1, 2, …}
ℤ {…, −2, −1, 0, 1, 2, …}
ℝ {…,0, 0.1, 0.11, . . . , e, …, π, …}

A B A × B

ℕ × ℕ = {(1,1), (1,2), (2,1), (2,2), …}

A B A → B

𝖺𝖻𝗌 : ℤ → ℕ0

: ℝ≥0 → ℝ × ℝ

ℕ × ℕ → ℕ
13

expression : type
Notational convention

type signature / specification

or depending who you ask!{0, 1, 2, …}

Static typing vs. Dynamic typing

14

• Compiler first does type checking

• Ill-typed programs rejected

‣ Intrinsic typing - Ill-typed
programs have no meaning
(cannot be run)

• Well-typed programs compiled,
using types for optimisation

• No pre-run checks

• Data stored with type information

• Operations check type information

• Errors occur “as it happens”

• Today: we will use mypy to add static typing to Python

Without types?

• E.g., in assembly languages

• One type = bits!

• Everything works / operations may not do what you want

• Developer has to track meaning themselves

15

Types eliminate a class of bugs

“Well typed programs cannot go wrong”
(Milner, 1978)

(For some definition of wrong!)

16

mypy

• Gradually convert from dynamic to static typing

• Optional extrinsic typing - ill-typed programs can still run (have meaning)

• Maths-like type signatures

⟹

17

An optional gradual, static type system for Python

def plus(x : int, y : int) -> int:
 return x + y

flag : bool = True

Getting mypy (if you want to ‘code along’)

18

python3 -m pip install mypy

python -m pip install mypy
Or possibly:

You may want to use the
vscode extension

Mypy/Python primitive types

int
bool
float
str
None (no result type)
Any (fall-back, anything)

19

def greet(name: str) -> None:
 print("Hi " + name)

Type constructors

• For some type t then list[t] captures lists of elements (all) of type t

20

Like type functions: create a type from other types

def greet_all(names: list[str]) -> None:
 for name in names:
 print('Hello ' + name)

• tuple[t1, t2, …] captures tuples with elements of type t1, t2, etc.

some_data : tuple[int, bool, str] = (42, True, “Manchester")

cf. notation on setsA × B

Type constructors

• dict[k, v] captures records/dictionaries of key k and value v type:

21

Like type functions: create a type from other types

x: dict[str, float] = {"field1": 2.0, "field2": 3.0}

• t1 | t2 captures either type t1 or t2 type (Python 3.10 <= Union[t1, t2])

def myDiv(x : float, y : float) -> (float | None):
 if y != 0: return x / y
 else: return None

Type constructors and classes

22

class Complex:
 def __init__(self, realpart, imagpart):
 self.r = realpart
 self.i = imagpart

h : Complex = Complex(3.0, -4.5)

Every class name is a type constructor

e.g.,

Querying mypy

23

reveal_type(expression)

Ask mypy what it thinks the type is:

from typing import TYPE_CHECKING

if TYPE_CHECKING:
 reveal_type(d1)

If you need to run too, hide reveal_type from runtime:

Subtyping

• Example: list[t] is a “subtype” of Iterable[t]

24

x : A f : B → C A :< B
f(x) : C

• In theory literature, A is a subtype of B written (think subsets)A :< B

• Can pass arguments of a subtype to a function

def greet_all(names: Iterable[str]) -> None:
 for name in names:
 print('Hello ' + name)

names = ["Alice", "Brijesh", "Chenxi"]
greet_all(names) # Ok!

e.g.

Polymorphism

25

(Also known as generic types)

def first_int(XS : list[int]) -> int:
 return xs[0]

def first(xs : list[str]) -> str:
 return xs[0]

• Consider the function

• What if we want to use it with list[int] too?

• Duplication bad for maintenance and understanding

Polymorphism

26

(Also known as generic types)

T = TypeVar('T')

def first(xs : list[type[T]]) -> type[T]:
 return xs[0]

• Solution: generalise to any element type T

from typing import TypeVar, Generic

• (Note: requires an import)

“Free theorems” follow from polymorphic types

27

• “Universality” of T tells us we cannot inspect or compute with the T elements

• Implies the following (“naturality”) property:

someFun(list(map(f, x))) = f(someFun(x))

list[type[T]]
someFun

type[t]

f

type[s]list[type[S]]

list(map(f,_))

someFun

Note the right
expression applies f
once, the left applies
it len(x) times.

 Optimisation!∴

def someFun(XS : list[type[T]]) -> type[T]• Consider

Function types
e.g., for typing higher-order functions

28

from typing import Callable
S = TypeVar('S')
T = TypeVar('T')
def memo(f : Callable[[S], T], x : S) -> tuple[S,T]:
 return (x, f(x))

Callable[[A1,... ,An], B]

For a function with n-inputs (n-ary) A1 to An and return type B:

e.g.,

cf. notation on sets 
or

A → B
(A1 × … × An) → B

Escape hatch!

29

borked = 0 / "hello" # type: ignore

• A type checker T is complete if, for all programs P then T(P) is true

• Most type checkers are incomplete some valid programs rejected

• Python has an escape hatch:

⟹

Does not raise a type checking error (though it clearly should)

mypy and NumPy
Types for external libraries

30

import numpy as np
myArray : np.ndarray = np.ndarray(shape=(2,2), dtype=float)

Can use the class names already for numpy, e.g.,

mypy and NumPy
Types for external libraries

31

[mypy]
plugins = numpy.typing.mypy_plugin

Needs local config, e.g., via mypy.ini

https://numpy.org/devdocs/reference/typing.html

import numpy.typing as npt

provides

• ArrayLike - objects that can be converted to arrays

• DTypeLike - objects that can be converted to dtypes

• NDArray[T] - numpy arrays of T values

mypy and NumPy
Types for external libraries

32

https://numpy.org/devdocs/reference/typing.html

import numpy as np
import numpy.typing as npt

def as_array(a: npt.ArrayLike) -> np.ndarray:
 return np.array(a)

def scale_array(a: float, arr: npt.NDArray[np.float64]) -> npt.NDArray[np.float64]:
 return a*arr

e.g.

Coming into land….
What did we learn?

• Understand key ideas behind specification and verification

• Understand some key concepts and terminology behind types
• “Sets” model
• Static vs dynamic
• Extrinsic vs intrinsic
• Subtyping
• Polymorphism

33

Coming into land….
What did we learn?

• Learn about the mypy tool for typing in Python

• mypy gives us extrinsic static typing

• Develop ability to use types to avoid bugs and write code more effectively

• Go and practice on your own (see worksheet!)

• Start using in projects

34

Worksheet

35

https://dorchard.github.io/types-tutorial/mypy-worksheet.pdf

https://dorchard.github.io/types-tutorial/mypy-worksheet.pdf

Thanks- and happy typing!

36

https://dorchard.github.io

@dorchard

types.pl/@dorchard

https://iccs.cam.ac.uk

https://dorchard.github.io
https://iccs.cam.ac.uk

VScode mypy plugin woes?
No errors appear

37

• Check mypy

• Explicitly set path to mypy

 "mypy-type-checker.path": ["/opt/homebrew/bin/mypy"]

% which mypy
/opt/homebrew/bin/mypy

• Then edit settings.json, adding, e.g.:

