
past, present, and a possible future
(∀m . □−m A) ∧ A ∧ ◊(∃n . □n A)

granule-project.github.io

Granule: A general purpose-
language for fine-grained reasoning

Dominic Orchard, 26th September - Shonan Meeting 203

https://granule-project.github.io/
https://granule-project.github.io/

past, present, and a possible future
(∀m . □−m A) ∧ A ∧ ◊(∃n . □n A)

granule-project.github.io

Granule: A general purpose-
language for fine-grained reasoning

Dominic Orchard, 26th September - Shonan Meeting 203

research

https://granule-project.github.io/
https://granule-project.github.io/

The past

3

ICALP’13 ICFP’14

C@Γ ⊢ e : τ

{𝖼𝗈𝗇𝗌𝗈𝗅𝖾}@Γ ⊢ 𝗉𝗋𝗂𝗇𝗍 "wat" : 𝗎𝗇𝗂𝗍 ⟨1,0⟩@x : A, y : B ⊢ x : A

flat
ambient

“whole context”

Type-and-coeffect systems

Modelled by (exponential) graded comonads

D : (M, ∙ ,1) → [𝒞, 𝒞] εA : A → D1A
δr,s,A : D(r ∙ s)A → DrDsA

structural
“per-variable”

ICFP’16

◊f A
Effects via graded monads

□r A
Coeffects via graded comonads

Linear-lambda calculus as basis

A ⊸ B

Discharge
constraints

automatically

SMT solver

anule language

Precision
Indexed

types
+

Data as
resource

Linear
types

Quantitative
reasoning

+
Graded
types

The
GADTs

Modal
Type

Analysis

Graded
Modal
Type

Analysis

□ , ◊, !, ?, M

□r , ◊g, !n, …

9

Modal
Type

Analysis

Graded
Modal
Type

Analysis

10

linear non-linear

!AA

linear non-linear

r ! A r ∈ ℛ
semiring

110

!antitative Program Reasoning with Graded Modal Types

DOMINIC ORCHARD, University of Kent, UK

VILEM-BENJAMIN LIEPELT, University of Kent, UK

HARLEY EADES III, Augusta University, USA

In programming, some data acts as a resource (e.g., !le handles, channels) subject to usage constraints.
This poses a challenge to software correctness as most languages are agnostic to constraints on data. The
approach of linear types provides a partial remedy, delineating data into resources to be used but never
copied or discarded, and unconstrained values. Bounded Linear Logic provides a more !ne-grained approach,
quantifying non-linear use via an indexed-family of modalities. Recent work on coe!ect types generalises
this idea to graded comonads, providing type systems which can capture various program properties. Here,
we propose the umbrella notion of graded modal types, encompassing coe"ect types and dual notions of
type-based e"ect reasoning via graded monads. In combination with linear and indexed types, we show that
graded modal types provide an expressive type theory for quantitative program reasoning, advancing the
reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach
via a type system embodied in a fully-#edged functional language called Granule, exploring various examples.

CCS Concepts: • Theory of computation→Modal and temporal logics; Program speci!cations; Pro-
gram veri!cation; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coe"ects, implementation

ACM Reference Format:
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning
with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:
//doi.org/10.1145/3341714

1 INTRODUCTION

Most programming languages treat data as in!nitely copiable, arbitrarily discardable, and univer-
sally unconstrained. However, this overly abstract view is naïve and can lead to software errors. For
example, some data encapsulates resources subject to protocols (e.g., !le and device handles, chan-
nels); some data has con!dentiality requirements and thus should not be copied or communicated
arbitrarily. Dually, some programs have non-functional properties (e.g., execution time) dependent
on data (e.g., on its size). Thus, the reality is that some data acts as a resource, subject to constraints.

In this paper we present Granule, a typed functional language that embeds a notion of data as a
resource into the type system in a way that can be specialised to di"erent resource and data#ow
properties. Granule’s type system combines linear types, indexed types (lightweight dependent
types), and graded modal types to enable novel quantitative reasoning.
Linear types treat data like a physical resource which must be used once, and then never

again [Girard 1987; Wadler 1990]. For example, the identity function is linearly typed as it binds a

Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of
Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART110
https://doi.org/10.1145/3341714

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICFP 2019

12

Recent past

13

LOPSTR 2020

TLLA 2021

Linearity and Uniqueness: An Entente Cordiale

Daniel Marshall1 (!) , Michael Vollmer1 , and Dominic Orchard1,2

1 University of Kent, Canterbury, UK
{dm635,m.vollmer,d.a.orchard}@kent.ac.uk

2 University of Cambridge, UK

Abstract. Substructural type systems are growing in popularity be-
cause they allow for a resourceful interpretation of data which can be
used to rule out various software bugs. Indeed, substructurality is fi-
nally taking hold in modern programming; Haskell now has linear types
roughly based on Girard’s linear logic but integrated via graded function
arrows, Clean has uniqueness types designed to ensure that values have
at most a single reference to them, and Rust has an intricate ownership
system for guaranteeing memory safety. But despite this broad range
of resourceful type systems, there is comparatively little understanding
of their relative strengths and weaknesses or whether their underlying
frameworks can be unified. There is often confusion about whether lin-
earity and uniqueness are essentially the same, or are instead ‘dual’ to
one another, or somewhere in between. This paper formalises the re-
lationship between these two well-studied but rarely contrasted ideas,
building on two distinct bodies of literature, showing that it is possible
and advantageous to have both linear and unique types in the same type
system. We study the guarantees of the resulting system and provide
a practical implementation in the graded modal setting of the Granule
language, adding a third kind of modality alongside coeffect and effect
modalities. We then demonstrate via a benchmark that our implementa-
tion benefits from expected efficiency gains enabled by adding uniqueness
to a language that already has a linear basis.

Keywords: linear types · uniqueness types · substructural logic

1 Introduction

Linear types [15, 57] and uniqueness types [5, 47] are two influential and long-
standing flavours of substructural type system. As these approaches have devel-
oped, it has become clear in the community (both in folklore and the literature)
that these are closely related ideas. For example, the chapter on substructurality
in Advanced Topics in Types and Programming Languages [62] describes unique-
ness types as “a variant of linear types”. This framing is supported by various
works which, for example, make reference to “a form of linearity (called unique-
ness)” [33] or other such statements of equality or similarity [38].

But reading a different set of papers gives a contrasting impression that
linearity and uniqueness are not the same but in some sense dual to one another,

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 346–375, 2022.
https://doi.org/10.1007/978-3-030-99336-8_13

ESOP 2022

PLACES 2022 + journal (in review)

PLACES 2022 + journal (in review)

ECOOP 2022

https://granule-project.github.io/docs

https://granule-project.github.io/docs

Some principles

• No Low magic

• Build things from theoretical elements

• Light syntax

• Interleave type checking and SMT

• CBV as (primary) semantics (but swappable in interpreter)

21

The present and ongoing

• Graded types Algebraic effects and handlers

• Graded uniqueness (borrowing and lifetimes)

• Graded base

⋈

&pA
a %r -> b

Graded arrow

The present and ongoing

Graded types in Haskell (GHC 9)

a %r -> b

Graded arrow

{-# LANGUAGE LinearTypes #-}

a %One -> b Linear

a %Many -> b Unrestricted

cf. linear-base:

a -> b

a [Many] -> b

a [Lin] -> b

(2017) - Bernardy, Boespflug, Newton, Peyton Jones, Spiwak - Linear Haskell: practical linearity in a higher-order polymorphic language.

data Box r a where { Box :: a %r-> Box r a }

Graded modality

23

 language GradedBase

A % r -> B

24

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

� ` A0 ⇠ A B �1 � ` �1B ⇠ �1B0 B �2

� ` A ! B ⇠ A0 ! B0 B �1] �2
U!

� ` A ⇠ A0 B �1 � ` �1B ⇠ �1B0 B �2

� ` AB ⇠ A0 B0 B �1] �2
U���

(� : �) 2 �

� ` � ⇠ � B ;
U���=

� ` A : � (� :9 �) 2 �

� ` � ⇠ A B � 7! A
U���9 � ` K ⇠ K B ;

U���
� ` A : �

� ` A ⇠ A B ;
U=

� ` A ⇠ A0 B � � ` �� ⇠ �� 0 B � 0

� ` ⌃�A ⇠ ⌃�0A0 B �] � 0
U⌃

� ` A ⇠ A0 B � � ` �c ⇠ �c0 B � 0

� ` ⇤cA ⇠ ⇤c0A0 B �] � 0
U⇤

Fig. 2. Type unification rules

Type uni�cation is given by relation � ` A ⇠ B B � in Figure 2. Uni�cation is essentially a

congruence over the structure o
f types (under a context �), crea

ting substitutions from uni�cation

variables to types, e.g. (U���9) for � ⇠ A (which has a symmetric counterpart for A ⇠ � elided

here for brevity). Universally quanti�ed variables can be uni�ed with themselves (U���=), and also

with uni�cation variables via (U���9). In multi-premise rules, substitutions generat
ed by unifying

subterms are then applied to types being uni�ed in later premises, e.g., as in (U!). Type uni�cation

extends to grading terms, which can also contain type variables. We elide the de�nition here since

it is straightforward and follows a similar scheme to the �gure.

Substitutions can be typed by a type-variable environment, � ` � (called compatibility) which

ensures that � is well-formed for use in a particular context. Compatibility is a meta-theoretic

property, which follows from our rules. Two substitutions �1
and �2 may be combined as �1] �2

when they are both compatible with the same type-variable environment � (i.e., � ` �1 and � ` �2).

If � 7! A 2 �1 and � 7! B 2 �2 and if A and B are uni�able � ` A ⇠ B B � then the combined

substitution �1] �2 has � 7! �A and also now includes � . For example:

(� 7! (Int ⇥ �))] (� 7! (� ⇥ Char)) = � 7! (Int ⇥ Char), � 7! Char,� 7! Int

If two substitutions for the same variable cannot be uni�ed, the
n context composition is unde�ned,

indicating a type error which is reported to the user in the implementation. Disjoint parts of a

substitution are simply concatenated. Composition also computes the transitive closure of
the

resulting substitution. The app
endix (De�nition ??) gives the full de�nition.

By lifting types to kinds with ", polymorphism in the type of grades is also possible, e.g.

poly : 8 {a : Type, k : Coeffect, c : k} . a [(1+1)*c] ! (a, a) [c]

poly [x] = [(x, x)]

The grade (1+1)*c is for some arbitrary resource algebra k of kind Coe�ect. Internally, the type

signature c : k is interpreted as c :"k (a type variable lifted to a kind). We also promote data types

to the kind level, with data constructors lifted to type constructors.

4.3.3 Top-level definitions & indexed types. As seen in Section 2, Granule supports algebraic a
nd

generalised algebraic data types (providing
indexed types) in the style of Haskell [Peyton Jones

et al. 2006]. At the start of type checking, all type constructors are kind checked and all data

constructors are type checked.
In typing relations here, the D environment holds type schemes for

data constructors, along with a substitution describing coercions from type variables to concrete

types, used to implement indexing. For example, the Cons data constructor of the Vec type in

Section 2.4 has the type Cons : a ! Vec n a ! Vec (n + 1) a which is then represented as:

Cons : (8(� : Type,n : Nat,m : Nat) . � ! Vec n� ! Vecm� , ��) 2 D where �� =m 7! n + 1

We use �� ,� 0� to range over substitutions used for the coercions, implementing the indices of

indexed type data constructors.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Artic
le 1. Publication date: January 2018.

`

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1
�antitative program reasoning with graded modal types
DOMINIC ORCHARD, University of Kent, UKVILEM-BENJAMIN LIEPELT, University of Kent, UKHARLEY EADES III, Augusta University, USA
In programming, data is often considered to be in�nitely copiable, arbitrarily discardable, and universally
unconstrained. However this view is naïve: some data encapsulates resources that are subject to protocols (e.g.,
�le and device handles, channels); some data should not be arbitrarily copied or communicated (e.g., private
data). Linear types provide a partial remedy by delineating data in two camps: “resources” to be used but
never copied or discarded, and unconstrained values. However, this binary distinction is too coarse-grained.
Instead, we propose the general notion of graded modal types, which in combination with linear and indexed
types, provides an expressive type theory for enforcing �ne-grained resource-like properties of data. We
present a type system drawing together these aspects (linear, graded, and indexed) embodied in a fully-�edged
functional language implementation, called Granule. We detail the type system, including its metatheoretic
properties, and explore examples in the concrete language. This work advances the wider goal of expanding
the reach of type systems to capture and verify a broader set of program properties.ACM Reference Format:Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2018. Quantitative program reasoning with
graded modal types. Proc. ACM Program. Lang. 1, CONF, Article 1 (January 2018), 29 pages.1 INTRODUCTION
Most programming languages (and type systems) take the view that data is unrestricted: it can be
replicated, discarded, and used without constraint. However, this view is naïve and can thus lead to
software errors. For example, some data is subject to con�dentiality requirements and therefore
should not be copied arbitrarily. Some data acts a proxy for an external resource (e.g., a socket,
hardware device, or �le) and therefore is sensitive to the order of operations applied to it. Dually,
some programs are sensitive to the size of their inputs, with non-functional aspects (e.g., execution
time) dependent on data. Thus, the reality is that some data acts as a resource, subject to constraints.
In this paper we present Granule, a typed functional language that embeds a notion of data as a

resource into the type system in a way that can be specialised to di�erent notions of resource and
data�ow property. Granule is based on a combination of linear types, indexed types (lightweight
dependent types), and the recent notion of gradedmodal types to enable novel quantitative reasoning.
Linear types, in their strictest sense, treat data like a physical resource which must be used once,

and then never again [Girard 1987; Wadler 1990]. For example, we can type the identity function as
it binds a variable, then uses it, whereas the K combinator �x .��.x is not linearly typed as � is never
used. To overcome this restriction, linear logic provides a modal operator ! which captures and
tracks non-linear, unconstrained values. This provides a binary view: either values are linear (like a
resource) or non-linear (like the traditional view of data). However, in programming, non-linearity
rapidly permeates programs. Bounded Linear Logic (BLL) instead provides a more �ne-grained
view, replacing ! with an family of modal operators indexed by terms capturing the upper bound
on usage [Girard et al. 1992], e.g., !2A captures A values that can be used at most twice. The proof
rules then manipulate these indices, accounting for contraction, weakening, and composition.Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of

Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.2018. 2475-1421/2018/1-ART1 $15.00https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://granule-project.github.io/
Download and play!

25

Some more resources here from recent summer school material
https://granule-project.github.io/splv23

https://granule-project.github.io/splv23

