Lightweight code verification
for science

Dominic Orchard
Cross-VESRI Journal Club - 13th June 2023

sl UNIVERSITY OF Q\ Institute. of UnlverSIty of Programming

ooy - IR pnt Q Languages and SJ/StemS
for Science laboratory

_ Computing for
& CAMBRIDGE Climate Science

https://plas4sci.github.io/
https://plas4sci.github.io/
https://plas4sci.github.io/

Thanks to the work of:

Mistral Contrastin Matthew Danish Andrew Rice Ben Orchard

And thanks to the support of:

Engineering and — ‘
Bloomberg et =)
Research Council . F

SCHMIDT FUTURES

Procedia Computer Science

CrossMark Volume 29, 2014, Pages 713—727

Procedia
ICCS 2014. 14th International Conference on Computational Science Computer
Science

A computational science agenda for programming language
research

Dominic Orchard!, Andrew Rice?

! Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk
2 Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

Abstract

Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,
type systems, language design

Journal of Computational Science 9 (2015) 156-162

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Evolving Fortran types with inferred units-of-measure

Dominic Orchard®*, Andrew RiceP”, Oleg Oshmyan”

4 Department of Computing, Imperial College London, United Kingdom
b Computer Laboratory, University of Cambridge, United Kingdom

ARTICLE INFO ABSTRACT

Article history:
Available online 18 April 2015

Dimensional analysis is a well known technique for checking the consiste
physical quantities, constituting a kind of type system. Various type systen
and its refinement to units-of-measure, have been proposed. In this pape!

Keywords: implementation of a units-of-measure system for Fortran, provided as a pi

Units-of-measure
Dimension typing
Type systems
Verification

Code base evolution

designed to aid adding units to existing code base: units may be polymorph
thermore, we introduce a technique for reporting to the user a set of critica
explicitly annotated with units to get the maximum amount of unit informat
ber of explicit declarations. This aids adoption of our type system to existing

Fortran are many in computational science projects.

Language design

© 2015 The Authors. Published by Elsevier B.V. This is an open access art

(http://creativecom

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in[2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3m to 2];
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
laneuaces (e.o. [101 1s a famous paper detailine one such anoroach.

circumstances. It therefore seems inevita
likely in computational science too.

The importance of units is often directly
code. We have seen source files careful
units and dimensions of each variable and
watched programmers trying to use this |
scrolling up and down, repeatedly referr
tion of each parameter. Incorporating ur
would move the onus of responsibility f
the compiler.

A recent ISO standards proposal (N196
a units-of-measure system which follov
explicitness [7]. Every variable declaratic
unit declaration and every composite
seconds) must itself be explicitlv declare«

Procedia Computer Science

CrossMark Volume 29, 2014, Pages 713-727

Procedia
ICCS 2014. 14th International Conference on Computational Science Computer
Science

A computational science agenda for programming language
research

Dominic Orchard!, Andrew Rice?

! Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk
* Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

Abstract

Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,
type systems, language design

Model

N\

Prediction

AN

Experiment/observation

N

Analysis

N\

Reproduction

Model -

N\

Prediction

AN

Experiment/observation

Computer
programs \ /

Analysis

N\

Reproduction

Model -

N\

Prediction

AN

Experiment/observation

Computer
programs /

Analysis

N\

Reproduction

Model - Code is the model

Prediction

AN

Experiment/observation

Computer
programs \ /

Analysis

complicated relationship \

R - Reproduction

Example 1D heat equation

Abstract model

2 1, QAT 1 1
% _ QM ¢)€ _ ¢)€ T A_xz(;4_1 T 2§b3€ T ¢;_1)

ot Ox?

Example 1D heat equation

Abstract model

0¢h 0°¢h
—_— =)
ot Ox?

Solution strategy
h! =

o+ 20 Il

O 0 ~ o) ot =~ W (V) =

p— = p—
\V) = o

[t
W

14

Prediction calculation

tend = %» end time

Xmax = % length of material

dt = /%» time resolution

dx = /» space resolution

alpha = ... %» diffusion coefficient
nt = tend/dt % # of time steps

nx = xmax/dx % # of space steps

r = alphaxdt/dx"2 7, constant in solution
real h(0,nx), 7, heat fun. (discretised

h_01ld(0, nx); % in space) at t and t-1

do t = 0, nt
h_old = h
do x =1, nx - 1

h(i) = h_old(i) + rx*
- 2%h_old(i) +

end do
end do

Gap in explanation....

1 module simulaticr_mcd
2 usa helpers_med
3 imal cit none
1
;ﬁﬁmﬂmﬁmﬁmﬂumm ¥ CAMBRI DGL 5 coalains
UNIVELRSITY PRESS
6
APPLICATION PAPER @ O 7 sudroutine compute_tentative_valocity(u, v, 7, g, *lzg, del_t)
B8 real ulB:imex~1, A:imax~1), v(®:imax+1, @:jmax+1), <(€:irvax+l, D:imax+l), &
g gld:imex~1, ®¥:]max-1)
A sensitivity analysis of a regression model of occan 18 irtege flag(0:imax+1, 0:jmax+i)
11 real, inteat(in) :: del_t
temperature 12 ' -
Rachel Furmer ~* (7, Peter Haynes , Dave Munday”, Broaks Peige’, Daniel C. Jones” ¥ and 13 irteger 1, 3
Fmily Shickburgh’ 14 real du2dx, dusdy, duvcx, dv2dy, laplu, laplv
' Deparient of Applied Mataematics and Theoretieal Physics, Univarsity of Camboidge, Cambridge, United Kingdom 15
'Fuii"'lnbnttQunv’,fami'iulgr,"nilnl King kun 16 dc 1L =1, (imax-1)
L. Cenie v Avificid hadbzeme, Conge e Scicace, nverssy Coalkege Lo, Lovdos, Uniied K agidun) ' X
Mepur et of Compater Sciane el Tadwokyy, s versy of Cond il 17 do 3 - 1, jnax
*Comespondng auhor. C-mak raf53Gcemac uk 18 ! only 1t octh adjzcant cells are fluid cells %/
Roeeived: 14 Jarnary JC22; Ravised: 09 June 2022, Aceeprod: 21 July 2022 19 il (tocgical liand(lagii, [}, C_F)) .ami. &
Keywordse Duts seiine, wtapeablke ML, mode. scisitivily, occsogiophy, sqasssion modsl 28 to_coicalliand(flag(i+l,j), C_F}]} then
71
Abstract 22 duzdx = ((uli,i) el L, 3] beduli, i) uliil, i) &
There his been much reeent interest m developmg catz-d-ven mocels tor weather ard chmate prodictons. Hewever., 23 gemna*ans (u(z, J)+u(i+1, 1)) =(u(L, J)-u(i+1,)))- &
there acoper cuestioms segarding theic gencralizability and rcbustacss, higalighting a need 1o bettes urdarstand o 24 (uli-1,3)=ulz, j)elulii-1, 5] +ul, 50~ &
ey make ther prolictons. [n partsake, o & irpocizal o mdasan! wheler datz<diven rxdeds learmn the . ,
undartying physis of the system againt which they are rained, or shirply identfy statistics) pamerns witheat a1y 5 gamnataoe (u(1-1,114ui1,))+ (u(2-1,))-u(1,)))] &
doar link % the usderiying physas, Ir this paper, we desanibe a sensitivity onalysic of o regressior-besxd medel of 26 /(4.84d=1x)
oeean femperabars, traned against smulatons from 2 3D occar mode. setup ina very simple configuration. We saow y e o 1 4] va 1)
(et dhiee epressoc heavily basos ity focecasts on, and s dependent cn, wmabhes kooan o be key o e piysies such as ‘ dunvdy ((V[l'])‘v,u 1'.]‘ “‘.0(1'.” U(l'lfl') . &
Surremts and densiry. By contrast, the regressor does notmake heavy use of inpate ewch as locatics, which have limitec ?R gemmaxals (o jr=uli+l,) =(uli, j)=uli, j+1))- &
direct physical imoacts The medal requires nonlinecr interactions etween inpuls irt arder 1o show ary meadingfal 20 (vii,i 1) wlz 1,7 1) 4Culd,i 2jruli,i)) &
skill—an [m¢ with the highly nomlincar dysamscs of the ocsan., Further ara yss ptermnrets the ways cortam varmbles O _ 1y .
wenses hy the regression nodel Wesee that information aboet the vertical profile af the water oo i eduess enars 8 gemna+ans {v(2, J ‘J‘\ H41,3-1)=(utd, 3-1)-u(d, 1)) &
in regions of convecive sctivity, ind infonraticn sbowt the currencs raduces enory in regioos deminuted by advective 31 /(4. 3dely]
precessee, Our rezulls demonetrate that even a simple rexrassior medal is capable of learing much of tw ahysics of 32 Laptu = (uil+l,§)-2.0=a(,§)+u(i-1,})) /delx/celx+ &
lhcsyam_m.md:lm.\w capedt hal a amar sensalivity analysis could b useru ly epplicd to mose comalex 1 (Ul i, i+1)-2.0~ul2,3)+uli, 5-1)) /dely/cely
ean r.rmngnr.'rmt
31
35 O, 5) = wli, j) + del_tst laplus/Re—du2dx-duvdy !
Impuet Stutement 35 clse
Mackine karning provides a promsing tocl for weather and climelc forccasting. However, for deto-driven 37 i j) = uli, j)
forecast waodels ‘o eventually be nsad in aperational settivgs we nesd to not_ust e assarsd of their ahility to 38 cnd i<
petfoon wdl, bu slso o mdesiawl the ways o which these oodels ae workieg &0 buald wst in these 33 end do
systems, We use a varicty of modal interpresation tecimiguaes to investigace hose a simple regrassion model
makss 1 predictions. W find that the medal studied nere, dehaves in agreemert with the known physics of 49 erd do
the systemn. This works shows that data-driven maexdels are capable of leaming meanmgtal ashyscs-hased 11

papers

programs

Abstract model Solution strategy Prediction calculation

Conflation of concerns

Abstract model Solution strategy Prediction calculation

Fripdiractrowldaiation

Code conflates & hides many aspects of the model

Open educational

Open resources Open source
research data software and
\ source code

Scientific Open
publications hardware

Open
scientific
knowledge

Open
dialogue
with other
knowledge
systems

Open
science
infrastructures

Open
engagement
of societal

actors

UNESCO 2021 Open Science recommendation

https://en.wikipedia.org/wiki/UNESCO

Open educational

Open resources Open source
research data software and
source code

Open
hardware

https://en.wikipedia.org/wiki/UNESCO

But.. sharing code includes sharing bugs

+ assumptions
+ incidental decisions
+ approximations

Open problem: separating and relating concerns

Abstract model Prediction calculation

Partial solutions
Extra technical documentation
Clear systems design
High modularity

Could there be better support via a programming
language tailored to science?

BETTER
LANGUAGES

BETTER
SOFTWARE

BETTER
RESEARCH

The four Rs of programming language design... (Orchard, 2011)

Reading
wRIting

Reasoning
Running

The Four Rs of Programming Language Design

Dominic Orchard
Computer Laboratory, University of Cambridge, UK

dominic.orchard@®cl.cam.ac.uk

Categories and Subject Descriptors 1.1.0 |Software|: Program-

ming Techniques—General, 1.0[Computing Methodologies]. GEN-

ERAL
General Terms Design, Languages

Keywords Programming language design, The Four Rs, Domain-
specific languages

“I can learn the poor things reading, writing, and 'rithmetic,
and counting as far as the rule of three, which 1s just as much
as the likes of them require.” Lawrie Todd: Or the Settlers
in the Woods, Galt (1832) [4].

———

Many will be familiar with the old adage that at the core of
any child’s education should be the three Rs: reading, writing,
and ‘rithmetic. The phrase, which appeared first in print in 1825
[12] has been appropriated and parodied at length (“read, reason,
recite”, “reduce, reuse, recycle”, ete.). Bach permutation has the
same purpose: to express succinctly the core tenets of an approach
or philosophy.

The four Rs of programming language design is another such
parody of this old phrase, providing a rubric, or framework, for
the design and evaluation of effective programming languages and
language features.

Since the very first programming language back in the 1940s
[14] thowusands of programming languages have been developed,
representing a broad spectrum of paradigms, perspectives, and
philosophies. And yet, there 1s no single language which 1s “all
things to all men” (and women!).

The four Rs were born out of trying to answer a number of ques-
tions about the nature of programming languages and programming
language design: what makes a programming language effective or
ineffective? What should be the core aims of a language designer?
How should programming languages and features be compared?
Why is there no single “perfect” language? The four Ry go some-
way towards answering these questions,

Before I reveal the four Rs, let’s first consider some more foun-
dational questions:

Why programming languages? 'The development of program-
ming languages has greatly aided software engineering. As hard-

languages have developed to manage this complexity more effec-
tively, aiding us in expressing ideas and solving increasingly com-
plex problems.

Programming languages provide abstraction, by both hiding de-
tails and allowing components to be reused, allowing programmers
to more effectively manage complexity in software and hardware.
While it is in principle possible for any program to be written in
machine code, it's hard to imagine some of the larger computer
programs we interact with daily being developed in such a way. By
building layers of abstraction with languages, increasingly complex
systems can be constructed.

What is programming? In essence, programming is a conununi-
cation process between one or more programmers and one or more
computer systems. Programming languages are the medium of this
communication.

Programming is not only a communication process, it is also a
translation process. Each participant in the programming process
has an internal language, both programmers and machines. In the
case of a machine, the internal language comprises the instructions
of the underlying hardware. In the case of a programmer, the inter-
nal language is far more nebulous, perhaps comprising natural and
formal languages, along with other incorporeal, abstract thoughts.

In any case, a programming language acts as the intermediate
language of translation between the participants. Programming is
the translation from a programmer’s internal language to a pro-
gramming language, and execution 1s the translaton from the
programming language to the machine’s internal language. Mc-
Cracken, in 1957, captured some of this sentiment, sayimg “Pro-
gramming [...] 1s basically a process of translating from the lan-
guage convenient to human beings to the language convenient
to the computer” where the convenient language for humans was
“mathematics or English statements of decisions to be made™ [8].
Here we consider the “language convenient to human beings™ to be
programming languages, bridging the gap between our ideas and
the underlying, low-level instructions of a computer system.

Sometimes, programming is more exploration than communi-
cation. In which case, a programmer explores and learns about a
problem by translating their internal thoughts into a program and
the re-internalising the result to gain further insight. Again the pro-
cess 1s a translational.

[tig from this view of programming, as a translation, communi-

P . T D S ST T o & T T . |

The Two Complexities

Accidental

Inherent

Inadequately supported Too easy to introduce

Both hinder scientific progress, only one Is necessary

Roadmap

1. Computer science engagement with scientists
2. New systems for abstraction and specification

3. Evolutionary approach for languages

@ Procedia Computer Science

CrossMark Volume 29, 2014, Pages 713-727

ICCS 2014. 14th International Conference on Computational Science ompute

A computational science agenda for programming language
research

Dominic Orchard!, Andrew Rice?

! Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk
2 Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

20

Abstract
Scientific models are often expressed as large and complicated programs. These programs

Validation
Did we implement the right equations?

VS
rification
Did we implement the equations right?

Challenge

Telling these two apart when results are not as expected

Software bugs undermine reproduction

Testing vs. Verification
“Smoke” testing Types
Unit testing i‘ R Stai analys;
Integration testing * Specify-and-check i’;g

= . gy g so—

Important, but incomplete Largely unexplored
(does not rule out all bugs) in climate science

natural & physical sciences

verification!

computer science

natural & physical sciences

computer science

natural & physical sciences

computer science Let’s bridge the chasm!

Approaches to verification

Full verification Partial verification
| |
. I .
Code Full Partial Lightweight External spec.
spec. spec. spec. (Static analysis)
Time consuming How to chose Focussed on one

Specification completeness? .
P I which parts!? aspect

20

-
-
-

gl

Ny CUYANIA

opulation 562

-:.,

Ft above sea level 2150
Established 1951}

TOTAL 4663

:

-

-k

' _ -
- Widy ke
LR ‘ 2 s

photo from Andrew Kennedy's website
http://research.microsoft.com/en-us/um/people/akenn/units/

http://research.microsoft.com/en-us/um/people/akenn/units/

Journal of Computational Science 9 (2015) 156-162

journal homepage: www.elsevier.com/locate/jocs

Contents lists available at ScienceDirect

Journal of Computational Science

ooooo | of

J
~" COMPUTATIONAL
IENCE

Q‘f A

)
>

Evolving Fortran types with inferred units-of-measure

Dominic Orchard®*, Andrew RiceP, Oleg Oshmyan”

4 Department of Computing, Imperial College London, United Kingdom
b Computer Laboratory, University of Cambridge, United Kingdom

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:
Available online 18 April 2015

Dimensional analysis is a well known technique for checking the consistency of equations involving
physical quantities, constituting a kind of type system. Various type systems for dimensional analysis,
and its refinement to units-of-measure, have been proposed. In this paper, we detail the design and

Keywords: implementation of a units-of-measure system for Fortran, provided as a pre-processor. Our system is

Units-of-measure
Dimension typing
Type systems
Verification

Code base evolution

designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there

Fortran are many in computational science projects.

Language design

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in[2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3m to 2];
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness|[7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of

SCIENTIFIC PROGRAMMING

Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

Jnits-of-Measure Correctness in Fortran
2rograms

Mistral Contrastin, Andrew Rice, and Matthew Danish | University of Cambridge

Dominic Orchard | Imperial College London

uch of mathematics’ use in science revolves
around measurements of physical quantities,
both abstractly and concretely. Such measure-
ments are naturally classified by their dimen-
sion, that is, whether the measurement is of distance, energy,
time, and so on. Dimensionality is further refined by a mea-
surement’s units-of-measure (or units. for short). such as

lightweight, nonbinding specification and analysis too
can help find bugs in programs before they strike. We
that, in general, these kinds of program analysis tools w
come more widely used by scientists to save time and r
grief during the development process, as well as in
confidence in results of numerical models.

Fnsurine the consistent use of units is an impc

https://github.com/camfort/camfort/

CamFort

Verification Analysis

Refactoring

e Ragiivaliidl Bloomberg

Research Council

https://github.com/camfort/camfort/

Units-of-measure verification

program energy
real :: mass = 3.00, gravity = 9.91, height = 4.20
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

OO O & W N K-

Suggest
$ camfort units-suggest energyl.f90

Suggesting variables to annotate with unit specifications in 'energyl.f90'

energyl.f90: 3 variable declarations suggested to be given a

specification:
energyl.f90 (2:43) height
energyl.f90 (2:14) mass
energyl.f90 (3:14) potential_energy

Units-of-measure verification

program energy
!= unit kg :: mass
!= unit m :: height
real :: mass = 3.00, gravity = 9.91, height = 4.20
= unit kg m**x2/s*x*2 :: potential_energy
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

O 00O NO”U OV dp WD =

Check

$ camfort units-check energyl.f90

energyl.f90: Consistent. 4 variables checked.

Units-of-measure verification

program energy
!= unit kg :: mass
!= unit m :: height
real :: mass = 3.00, gravity = 9.91, height = 4.20
= unit kg m**x2/s*x*2 :: potential_energy
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

O 00O NO”U OV dp WD =

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl.{90

Units-of-measure verification

program energy
= unit kg :: mass
!= unit m :: height
= unit m/s**2 :: gravity
real :: mass = 3.00, gravity = 9.91, height = 4.20
'= unit kg m**2/s**x2 :: potential_energy
real :: potential_energy

O 00O ~NO OrVWv/Wb WD =

potential_energy = mass * gravity * height
10 end program energy

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl.{90

Check

Does it do what | think it does?

Infer
What does it do?

Synthesise

Capture what it does for documentation & future-proofing

Suggest

Where should | add a specification to get the most information?

Analysis Verification

00 Metq 0 Infer

Take home messages

* Are we done with language developments2 No! But changes slow

* Verification for:
Increasing trust
Speeding up development
Enabling reuse

* | am keen to explore more ideas in this space y @dOI’Cha rd

https://dorchard.github.io
https://camfort.qithub.io

https://dorchard
http://github.io
https://camfort.github.io

