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Abstract
Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,

type systems, language design

1 Introduction

With the increase in computer modelling in the sciences, programming languages are now
an important tool for expressing complex scientific theories. However, this use of computer
models has not changed the fundamental scientific method of hypothesis, prediction, experiment,
analysis, and reproduction [Var10]. Despite this immutability of the scientific method, computer
modelling has substantially increased the complexity of both prediction and reproduction. For
example, one might imagine the method applied to the question of one-dimensional heat flow:

1. Hypothesis A researcher argues that the change in heat within an object can be related
to time and space by a particular (second-order) differential equation.
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a b s t r a c t

Dimensional analysis is a well known technique for checking the consistency of equations involving
physical quantities, constituting a kind of type system. Various type systems for dimensional analysis,
and its refinement to units-of-measure, have been proposed. In this paper, we detail the design and
implementation of a units-of-measure system for Fortran, provided as a pre-processor. Our system is
designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there
are many in computational science projects.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in [2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3 m to 2 J;
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the
Mars Climate Orbiter [20]. Many programs in computational sci-
ence are also sensitive to this kind of error since they focus on
modelling the physical world. The software for the Mars Orbiter had
orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research
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circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness [7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of
measure to a project with 10,000 lines of code means manually
adding 1000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done
automatically based on a few manual annotations. This approach
might be used to automatically add N1969 annotations to a code-
base or in an Integrated Development Environment (IDE) to inform
the programmer of the units as they code. Our approach is to add
a validation step prior to compilation: our tool takes annotated
Fortran code and validates the units. The annotations can then be
automatically removed and the program compiled as normal using
the preferred compiler.

http://dx.doi.org/10.1016/j.jocs.2015.04.018
1877-7503/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Example 1D heat equation



Solution strategy
ϕt

x =
ϕt−1

x +
αΔt
Δx2

(ϕt−1
x+1 + 2ϕt−1

x + ϕt−1
x−1)

Prediction calculation
1 tend = ... % end time
2 xmax = ... % length of material
3 dt = ... % time resolution
4 dx = ... % space resolution
5 alpha = ... % diffusion coefficient
6 nt = tend/dt % # of time steps
7 nx = xmax/dx % # of space steps
8 r = alpha*dt/dx^2 % constant in solution
9

10 real h(0,nx), % heat fun. (discretised
11 h_old(0, nx); % in space) at t and t-1
12

13 do t = 0, nt
14 h_old = h
15 do x = 1, nx - 1
16 h(i) = h_old(i) + r*(h_old(i-1))
17 - 2*h_old(i) + h_old(i+1)
18 end do
19 end do

10

Abstract model
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Conflation of concerns

Code conflates & hides many aspects of the model
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8.  Access to scienti!c knowledge should be as open as possible. Access 
restrictions need to be proportionate and justi!ed. They are only justi!able on 
the basis of the protection of human rights, national security, con!dentiality, 
the right to privacy and respect for human subjects of study, legal process 
and public order, the protection of intellectual property rights, personal 
information, sacred and secret indigenous knowledge, and rare, threatened or 
endangered species. Some data or code that is not openly available, accessible 
and reusable may nonetheless be shared among speci!c users according to 
de!ned access criteria made by local, national or regional pertinent governing 
instances. In cases where data cannot be openly accessible, it is important to 
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But.. sharing code includes sharing bugs
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Partial solutions 
‣ Extra technical documentation 
‣ Clear systems design 
‣ High modularity

Open problem: separating and relating concerns

Could there be better support via a programming 
language tailored to science?

Solution strategy Prediction calculationAbstract model
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The four Rs of programming language design... (Orchard, 2011)
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The Two Complexities

Both hinder scientific progress, only one is necessary

Inadequately supported Too easy to introduce



Roadmap
1. Computer science engagement with scientists 

2. New systems for abstraction and specification 

3. Evolutionary approach for languages
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Challenge
Telling these two apart when results are not as expected
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Software bugs undermine reproduction 
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Testing  vs. Verification
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Important, but incomplete 
(does not rule out all bugs)

Largely unexplored 
in climate science
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Approaches to verification
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M uch of mathematics’ use in science revolves 
around measurements of physical quantities, 
both abstractly and concretely. Such measure-
ments are naturally classi!ed by their dimen-

sion, that is, whether the measurement is of distance, energy, 
time, and so on. Dimensionality is further re!ned by a mea-
surement’s units-of-measure (or units, for short), such as 
meters, Joules, seconds, and so on. Units-of-measure distin-
guish magnitudes from each other, giving additional mean-
ing, but despite their extensive use in the practice of science, 
units-of-measure don’t see widespread adoption in tools for 
scienti!c computing. Here, we demonstrate how our freely 
available, open source tool, CamFort, provides a low-e"ort 
and automated way of detecting mismatched units-of-mea-
sure in code. #is feature of CamFort is an example of a 

lightweight, nonbinding speci!cation and analysis tool that 
can help !nd bugs in programs before they strike. We hope 
that, in general, these kinds of program analysis tools will be-
come more widely used by scientists to save time and reduce  
grief during the development process, as well as increase 
con!dence in results of numerical models. 

Ensuring the consistent use of units is an important 
sanity check in scienti!c computing. For example, adding a 
value in kilograms to a value in liters is a nonsensical opera-
tion. As trivial as that error may seem, in large enough proj-
ects, such errors can go unnoticed by human eyes. One such 
famous incident was the Mars Climate Orbiter spacecraft, 
which disintegrated in the Martian atmosphere because one 
part of the critical mission-control software provided val-
ues in imperial units whereas another part expected  values 
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1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in [2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3 m to 2 J;
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the
Mars Climate Orbiter [20]. Many programs in computational sci-
ence are also sensitive to this kind of error since they focus on
modelling the physical world. The software for the Mars Orbiter had
orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research

∗ Corresponding author.
E-mail addresses: d.orchard@imperial.ac.uk (D. Orchard),

andrew.rice@cl.cam.ac.uk (A. Rice).

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness [7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of
measure to a project with 10,000 lines of code means manually
adding 1000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done
automatically based on a few manual annotations. This approach
might be used to automatically add N1969 annotations to a code-
base or in an Integrated Development Environment (IDE) to inform
the programmer of the units as they code. Our approach is to add
a validation step prior to compilation: our tool takes annotated
Fortran code and validates the units. The annotations can then be
automatically removed and the program compiled as normal using
the preferred compiler.

http://dx.doi.org/10.1016/j.jocs.2015.04.018
1877-7503/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1   program energy 
2     real :: mass = 3.00, gravity = 9.91, height = 4.20 
3     real :: potential_energy 
4    
5     potential_energy = mass * gravity * height  
6   end program energy

Suggest
$ camfort units-suggest energy1.f90

Units-of-measure verification

Suggesting variables to annotate with unit specifications in 'energy1.f90'
…
energy1.f90: 3 variable declarations suggested to be given a 
specification:
    energy1.f90 (2:43)    height
    energy1.f90 (2:14)    mass
    energy1.f90 (3:14)    potential_energy



1   program energy 
2     != unit kg :: mass 
3     != unit m  :: height 
4     real :: mass = 3.00, gravity = 9.91, height = 4.20 
5     != unit kg m**2/s**2 :: potential_energy 
6     real :: potential_energy 
7    
8     potential_energy = mass * gravity * height  
9   end program energy

energy1.f90: Consistent. 4 variables checked.

Check
$ camfort units-check energy1.f90

Units-of-measure verification



1   program energy 
2     != unit kg :: mass 
3     != unit m  :: height 
4     real :: mass = 3.00, gravity = 9.91, height = 4.20 
5     != unit kg m**2/s**2 :: potential_energy 
6     real :: potential_energy 
7    
8     potential_energy = mass * gravity * height  
9   end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Units-of-measure verification



1   program energy 
2     != unit kg :: mass 
3     != unit m  :: height 
4     != unit m/s**2  :: gravity 
5     real :: mass = 3.00, gravity = 9.91, height = 4.20 
6     != unit kg m**2/s**2 :: potential_energy 
7     real :: potential_energy 
8    
9     potential_energy = mass * gravity * height  
10  end program energy

Synthesising units for energy1.f90

$ camfort units-synth energy1.f90 energy1.f90

Synthesise

Units-of-measure verification
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Does it do what I think it does?

Infer
What does it do?

Synthesise
Capture what it does for documentation & future-proofing

Suggest
Where should I add a specification to get the most information?



Verification
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Take home messages

•Are we done with language developments? No! But changes slow 

•Verification for: 
‣ Increasing trust 
‣ Speeding up development 
‣ Enabling reuse 

•I am keen to explore more ideas in this space
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