
Lightweight code verification
for science

Dominic Orchard

Programming
Languages and Systems
for Science laboratory

Cross-VESRI Journal Club - 13th June 2023

https://plas4sci.github.io/
https://plas4sci.github.io/
https://plas4sci.github.io/

Thanks to the work of:

And thanks to the support of:

Mistral Contrastin Matthew Danish Andrew Rice Ben Orchard

A computational science agenda for programming language
research

Dominic Orchard1, Andrew Rice2

1 Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk

2 Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

Abstract
Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,

type systems, language design

1 Introduction

With the increase in computer modelling in the sciences, programming languages are now
an important tool for expressing complex scientific theories. However, this use of computer
models has not changed the fundamental scientific method of hypothesis, prediction, experiment,
analysis, and reproduction [Var10]. Despite this immutability of the scientific method, computer
modelling has substantially increased the complexity of both prediction and reproduction. For
example, one might imagine the method applied to the question of one-dimensional heat flow:

1. Hypothesis A researcher argues that the change in heat within an object can be related
to time and space by a particular (second-order) differential equation.

Procedia Computer Science

Volume 29, 2014, Pages 713–727

ICCS 2014. 14th International Conference on Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

713

doi: 10.1016/j.procs.2014.05.064

Journal of Computational Science 9 (2015) 156–162

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Evolving Fortran types with inferred units-of-measure

Dominic Orcharda,∗, Andrew Riceb, Oleg Oshmyanb

a Department of Computing, Imperial College London, United Kingdom
b Computer Laboratory, University of Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Available online 18 April 2015

Keywords:
Units-of-measure
Dimension typing
Type systems
Verification
Code base evolution
Fortran
Language design

a b s t r a c t

Dimensional analysis is a well known technique for checking the consistency of equations involving
physical quantities, constituting a kind of type system. Various type systems for dimensional analysis,
and its refinement to units-of-measure, have been proposed. In this paper, we detail the design and
implementation of a units-of-measure system for Fortran, provided as a pre-processor. Our system is
designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there
are many in computational science projects.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in [2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3 m to 2 J;
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the
Mars Climate Orbiter [20]. Many programs in computational sci-
ence are also sensitive to this kind of error since they focus on
modelling the physical world. The software for the Mars Orbiter had
orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research

∗ Corresponding author.
E-mail addresses: d.orchard@imperial.ac.uk (D. Orchard),

andrew.rice@cl.cam.ac.uk (A. Rice).

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness [7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of
measure to a project with 10,000 lines of code means manually
adding 1000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done
automatically based on a few manual annotations. This approach
might be used to automatically add N1969 annotations to a code-
base or in an Integrated Development Environment (IDE) to inform
the programmer of the units as they code. Our approach is to add
a validation step prior to compilation: our tool takes annotated
Fortran code and validates the units. The annotations can then be
automatically removed and the program compiled as normal using
the preferred compiler.

http://dx.doi.org/10.1016/j.jocs.2015.04.018
1877-7503/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A computational science agenda for programming language
research

Dominic Orchard1, Andrew Rice2

1 Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk

2 Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

Abstract
Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,

type systems, language design

1 Introduction

With the increase in computer modelling in the sciences, programming languages are now
an important tool for expressing complex scientific theories. However, this use of computer
models has not changed the fundamental scientific method of hypothesis, prediction, experiment,
analysis, and reproduction [Var10]. Despite this immutability of the scientific method, computer
modelling has substantially increased the complexity of both prediction and reproduction. For
example, one might imagine the method applied to the question of one-dimensional heat flow:

1. Hypothesis A researcher argues that the change in heat within an object can be related
to time and space by a particular (second-order) differential equation.

Procedia Computer Science

Volume 29, 2014, Pages 713–727

ICCS 2014. 14th International Conference on Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

713

doi: 10.1016/j.procs.2014.05.064

Reproduction

Prediction

Experiment/observation

Analysis

5

Model

Reproduction

Prediction

Experiment/observation

Analysis

6

Model

Computer
programs

Reproduction

Prediction

Experiment/observation

Analysis

7

Model

Computer
programs
Computer
programs

Reproduction

Prediction

Experiment/observation

Analysis

8

Model

Computer
programs
Computer
programs

Code is the model

Computer
programs

complicated relationship

Abstract model

∂ϕ
∂t

= α
∂2ϕ
∂x2

Solution strategy

ϕt
x = ϕt−1

x +
αΔt
Δx2

(ϕt−1
x+1 + 2ϕt−1

x + ϕt−1
x−1)

9

Example 1D heat equation

Solution strategy
ϕt

x =
ϕt−1

x +
αΔt
Δx2

(ϕt−1
x+1 + 2ϕt−1

x + ϕt−1
x−1)

Prediction calculation
1 tend = ... % end time
2 xmax = ... % length of material
3 dt = ... % time resolution
4 dx = ... % space resolution
5 alpha = ... % diffusion coefficient
6 nt = tend/dt % # of time steps
7 nx = xmax/dx % # of space steps
8 r = alpha*dt/dx^2 % constant in solution
9

10 real h(0,nx), % heat fun. (discretised
11 h_old(0, nx); % in space) at t and t-1
12

13 do t = 0, nt
14 h_old = h
15 do x = 1, nx - 1
16 h(i) = h_old(i) + r*(h_old(i-1))
17 - 2*h_old(i) + h_old(i+1)
18 end do
19 end do

10

Abstract model

∂ϕ
∂t

= α
∂2ϕ
∂x2

Example 1D heat equation

11

papers
programs

???

Solution strategy Prediction calculationAbstract model

Gap in explanation….

Prediction calculationAbstract modelSolution strategy

Solution strategy Prediction calculationAbstract model

12

Conflation of concerns

Code conflates & hides many aspects of the model

UNESCO 2021 Open Science recommendation

Open
scienti!c

knowledge

Open
science

infrastructures

Open
engagement

of societal
actors

Scienti!c
publications

Open
research data

Open educational
resources Open source

software and
source code

Open
hardware

OPEN
SCIENCE

Open
dialogue

with other
knowledge

systems

8. Access to scienti!c knowledge should be as open as possible. Access
restrictions need to be proportionate and justi!ed. They are only justi!able on
the basis of the protection of human rights, national security, con!dentiality,
the right to privacy and respect for human subjects of study, legal process
and public order, the protection of intellectual property rights, personal
information, sacred and secret indigenous knowledge, and rare, threatened or
endangered species. Some data or code that is not openly available, accessible
and reusable may nonetheless be shared among speci!c users according to
de!ned access criteria made by local, national or regional pertinent governing
instances. In cases where data cannot be openly accessible, it is important to

11

https://en.wikipedia.org/wiki/UNESCO

UNESCO 2021 Open Science recommendation

Open
scienti!c

knowledge

Open
science

infrastructures

Open
engagement

of societal
actors

Scienti!c
publications

Open
research data

Open educational
resources Open source

software and
source code

Open
hardware

OPEN
SCIENCE

Open
dialogue

with other
knowledge

systems

8. Access to scienti!c knowledge should be as open as possible. Access
restrictions need to be proportionate and justi!ed. They are only justi!able on
the basis of the protection of human rights, national security, con!dentiality,
the right to privacy and respect for human subjects of study, legal process
and public order, the protection of intellectual property rights, personal
information, sacred and secret indigenous knowledge, and rare, threatened or
endangered species. Some data or code that is not openly available, accessible
and reusable may nonetheless be shared among speci!c users according to
de!ned access criteria made by local, national or regional pertinent governing
instances. In cases where data cannot be openly accessible, it is important to

11

https://en.wikipedia.org/wiki/UNESCO

But.. sharing code includes sharing bugs

15

+ assumptions

+ approximations
+ incidental decisions

papers
programs

???

16

Partial solutions
‣ Extra technical documentation
‣ Clear systems design
‣ High modularity

Open problem: separating and relating concerns

Could there be better support via a programming
language tailored to science?

Solution strategy Prediction calculationAbstract model

BETTER
SOFTWARE

BETTER
LANGUAGES

BETTER
RESEARCH

The four Rs of programming language design... (Orchard, 2011)

Reading
wRiting
Reasoning
Running

Inherent Accidental

19

The Two Complexities

Both hinder scientific progress, only one is necessary

Inadequately supported Too easy to introduce

Roadmap
1. Computer science engagement with scientists

2. New systems for abstraction and specification

3. Evolutionary approach for languages

20

A computational science agenda for programming language
research

Dominic Orchard1, Andrew Rice2

1 Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk

2 Computer Laboratory, University of Cambridge
andrew.rice@cl.cam.ac.uk

Abstract
Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
assumptions from the original scientific intent. Instead we advocate higher-level abstractions in
programming languages, coupled with lightweight verification techniques such as specification
and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.

Keywords: computational science, modelling, programming, verification, reproducibility, abstractions,

type systems, language design

1 Introduction

With the increase in computer modelling in the sciences, programming languages are now
an important tool for expressing complex scientific theories. However, this use of computer
models has not changed the fundamental scientific method of hypothesis, prediction, experiment,
analysis, and reproduction [Var10]. Despite this immutability of the scientific method, computer
modelling has substantially increased the complexity of both prediction and reproduction. For
example, one might imagine the method applied to the question of one-dimensional heat flow:

1. Hypothesis A researcher argues that the change in heat within an object can be related
to time and space by a particular (second-order) differential equation.

Procedia Computer Science

Volume 29, 2014, Pages 713–727

ICCS 2014. 14th International Conference on Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

713

doi: 10.1016/j.procs.2014.05.064

Did we implement the right equations?
Validation

Challenge
Telling these two apart when results are not as expected

Verification
vs

Did we implement the equations right?

Software bugs undermine reproduction

22

Testing vs. Verification

Unit testing

“Smoke” testing

Integration testing

Types

Static analysis

Specify-and-check

Important, but incomplete
(does not rule out all bugs)

Largely unexplored
in climate science

natural & physical sciences

computer science

yes
pls!

verification!

natural & physical sciences

computer science

∀x.∃y.P(x)
→Q(y) yes

pls!

natural & physical sciences

computer science Let’s bridge the chasm!

???

∀x.∃y.P(x)
→Q(y)

Approaches to verification

26

Code Full
spec.

Partial
spec.

Time consuming
Specification completeness? How to chose

which parts?

Lightweight
spec.

Focussed on one
aspect

External spec.
(Static analysis)

Full verification Partial verification

photo from Andrew Kennedy’s website
http://research.microsoft.com/en-us/um/people/akenn/units/

http://research.microsoft.com/en-us/um/people/akenn/units/

SCIENTIFIC PROGRAMMING
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

102 Computing in Science & Engineering 1521-9615/16/$33.00 © 2016 IEEE Copublished by the IEEE CS and the AIP January/February 2016

SCIENTIFIC PROGRAMMING
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

Units-of-Measure Correctness in Fortran
Programs
Mistral Contrastin, Andrew Rice, and Matthew Danish | University of Cambridge
Dominic Orchard | Imperial College London

M uch of mathematics’ use in science revolves
around measurements of physical quantities,
both abstractly and concretely. Such measure-
ments are naturally classi!ed by their dimen-

sion, that is, whether the measurement is of distance, energy,
time, and so on. Dimensionality is further re!ned by a mea-
surement’s units-of-measure (or units, for short), such as
meters, Joules, seconds, and so on. Units-of-measure distin-
guish magnitudes from each other, giving additional mean-
ing, but despite their extensive use in the practice of science,
units-of-measure don’t see widespread adoption in tools for
scienti!c computing. Here, we demonstrate how our freely
available, open source tool, CamFort, provides a low-e"ort
and automated way of detecting mismatched units-of-mea-
sure in code. #is feature of CamFort is an example of a

lightweight, nonbinding speci!cation and analysis tool that
can help !nd bugs in programs before they strike. We hope
that, in general, these kinds of program analysis tools will be-
come more widely used by scientists to save time and reduce
grief during the development process, as well as increase
con!dence in results of numerical models.

Ensuring the consistent use of units is an important
sanity check in scienti!c computing. For example, adding a
value in kilograms to a value in liters is a nonsensical opera-
tion. As trivial as that error may seem, in large enough proj-
ects, such errors can go unnoticed by human eyes. One such
famous incident was the Mars Climate Orbiter spacecraft,
which disintegrated in the Martian atmosphere because one
part of the critical mission-control software provided val-
ues in imperial units whereas another part expected values

Journal of Computational Science 9 (2015) 156–162

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Evolving Fortran types with inferred units-of-measure

Dominic Orcharda,∗, Andrew Riceb, Oleg Oshmyanb

a Department of Computing, Imperial College London, United Kingdom
b Computer Laboratory, University of Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Available online 18 April 2015

Keywords:
Units-of-measure
Dimension typing
Type systems
Verification
Code base evolution
Fortran
Language design

a b s t r a c t

Dimensional analysis is a well known technique for checking the consistency of equations involving
physical quantities, constituting a kind of type system. Various type systems for dimensional analysis,
and its refinement to units-of-measure, have been proposed. In this paper, we detail the design and
implementation of a units-of-measure system for Fortran, provided as a pre-processor. Our system is
designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there
are many in computational science projects.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in [2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3 m to 2 J;
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the
Mars Climate Orbiter [20]. Many programs in computational sci-
ence are also sensitive to this kind of error since they focus on
modelling the physical world. The software for the Mars Orbiter had
orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research

∗ Corresponding author.
E-mail addresses: d.orchard@imperial.ac.uk (D. Orchard),

andrew.rice@cl.cam.ac.uk (A. Rice).

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness [7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of
measure to a project with 10,000 lines of code means manually
adding 1000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done
automatically based on a few manual annotations. This approach
might be used to automatically add N1969 annotations to a code-
base or in an Integrated Development Environment (IDE) to inform
the programmer of the units as they code. Our approach is to add
a validation step prior to compilation: our tool takes annotated
Fortran code and validates the units. The annotations can then be
automatically removed and the program compiled as normal using
the preferred compiler.

http://dx.doi.org/10.1016/j.jocs.2015.04.018
1877-7503/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/camfort/camfort/

Verification

 🤔☑
Analysis

🐞 🔍
Refactoring

🏚 🏠→77 90

https://github.com/camfort/camfort/

1 program energy
2 real :: mass = 3.00, gravity = 9.91, height = 4.20
3 real :: potential_energy
4
5 potential_energy = mass * gravity * height
6 end program energy

Suggest
$ camfort units-suggest energy1.f90

Units-of-measure verification

Suggesting variables to annotate with unit specifications in 'energy1.f90'
…
energy1.f90: 3 variable declarations suggested to be given a
specification:
 energy1.f90 (2:43) height
 energy1.f90 (2:14) mass
 energy1.f90 (3:14) potential_energy

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

energy1.f90: Consistent. 4 variables checked.

Check
$ camfort units-check energy1.f90

Units-of-measure verification

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Units-of-measure verification

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 != unit m/s**2 :: gravity
5 real :: mass = 3.00, gravity = 9.91, height = 4.20
6 != unit kg m**2/s**2 :: potential_energy
7 real :: potential_energy
8
9 potential_energy = mass * gravity * height
10 end program energy

Synthesising units for energy1.f90

$ camfort units-synth energy1.f90 energy1.f90

Synthesise

Units-of-measure verification

Check
Does it do what I think it does?

Infer
What does it do?

Synthesise
Capture what it does for documentation & future-proofing

Suggest
Where should I add a specification to get the most information?

Verification

 🤔☑
Analysis

🐞 🔍

See general tools
e.g.

Take home messages

•Are we done with language developments? No! But changes slow

•Verification for:
‣ Increasing trust
‣ Speeding up development
‣ Enabling reuse

•I am keen to explore more ideas in this space

https://dorchard.github.io
@dorchard

https://camfort.github.io

https://dorchard
http://github.io
https://camfort.github.io

