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Abstract

Scientific models are often expressed as large and complicated programs. These programs
embody numerous assumptions made by the developer (e.g., for differential equations, the
discretization strategy and resolution). The complexity and pervasiveness of these assumptions
means that often the only true description of the model is the software itself. This has led various
researchers to call for scientists to publish their source code along with their papers. We argue
that this is unlikely to be beneficial since it is almost impossible to separate implementation
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and type systems. In this position paper, we suggest several novel techniques and outline an
evolutionary approach to applying these to existing and future models. One-dimensional heat
flow is used as an example throughout.
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designed to aid adding units to existing code base: units may be polymorph
thermore, we introduce a technique for reporting to the user a set of critica
explicitly annotated with units to get the maximum amount of unit informat
ber of explicit declarations. This aids adoption of our type system to existing

Fortran are many in computational science projects.
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1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in[2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3m to 2];
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
laneuaces (e.o. [ 101 1s a famous paper detailine one such anoroach.

circumstances. It therefore seems inevita
likely in computational science too.

The importance of units is often directly
code. We have seen source files careful
units and dimensions of each variable and
watched programmers trying to use this |
scrolling up and down, repeatedly referr
tion of each parameter. Incorporating ur
would move the onus of responsibility f
the compiler.

A recent ISO standards proposal (N196
a units-of-measure system which follov
explicitness [7]. Every variable declaratic
unit declaration and every composite
seconds) must itself be explicitlv declare«
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Example 1D heat equation

Abstract model
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Example 1D heat equation

Abstract model
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Solution strategy
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Prediction calculation

tend = %» end time

Xmax = % length of material

dt = /%» time resolution

dx = /» space resolution

alpha = ... %» diffusion coefficient
nt = tend/dt % # of time steps

nx = xmax/dx % # of space steps

r = alphaxdt/dx"2 7, constant in solution
real h(0,nx), 7, heat fun. (discretised

h_01ld(0, nx); % in space) at t and t-1

do t = 0, nt
h_old = h
do x =1, nx - 1

h(i) = h_old(i) + rx*
- 2%h_old(i) +

end do
end do



Gap in explanation....
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Conflation of concerns

Abstract model Solution strategy  Prediction calculation

Fripdiractrowldaiation

Code conflates & hides many aspects of the model
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But.. sharing code includes sharing bugs

+ assumptions
+ incidental decisions
+ approximations




Open problem: separating and relating concerns

Abstract model Prediction calculation

Partial solutions
Extra technical documentation
Clear systems design
High modularity

Could there be better support via a programming
language tailored to science?
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The four Rs of programming language design... (Orchard, 2011)

Reading
wRIting

Reasoning
Running

The Four Rs of Programming Language Design

Dominic Orchard
Computer Laboratory, University of Cambridge, UK

dominic.orchard@®cl.cam.ac.uk

Categories and Subject Descriptors 1.1.0 |Software|: Program-

ming Techniques—General, 1.0[Computing Methodologies]. GEN-

ERAL
General Terms Design, Languages

Keywords Programming language design, The Four Rs, Domain-
specific languages

“I can learn the poor things reading, writing, and 'rithmetic,
and counting as far as the rule of three, which 1s just as much
as the likes of them require.” Lawrie Todd: Or the Settlers
in the Woods, Galt (1832) [4].

———

Many will be familiar with the old adage that at the core of
any child’s education should be the three Rs: reading, writing,
and ‘rithmetic. The phrase, which appeared first in print in 1825
[12] has been appropriated and parodied at length (“read, reason,
recite”, “reduce, reuse, recycle”, ete.). Bach permutation has the
same purpose: to express succinctly the core tenets of an approach
or philosophy.

The four Rs of programming language design is another such
parody of this old phrase, providing a rubric, or framework, for
the design and evaluation of effective programming languages and
language features.

Since the very first programming language back in the 1940s
[14] thowusands of programming languages have been developed,
representing a broad spectrum of paradigms, perspectives, and
philosophies. And yet, there 1s no single language which 1s “all
things to all men” (and women!).

The four Rs were born out of trying to answer a number of ques-
tions about the nature of programming languages and programming
language design: what makes a programming language effective or
ineffective? What should be the core aims of a language designer?
How should programming languages and features be compared?
Why is there no single “perfect” language? The four Ry go some-
way towards answering these questions,

Before I reveal the four Rs, let’s first consider some more foun-
dational questions:

Why programming languages? 'The development of program-
ming languages has greatly aided software engineering. As hard-

languages have developed to manage this complexity more effec-
tively, aiding us in expressing ideas and solving increasingly com-
plex problems.

Programming languages provide abstraction, by both hiding de-
tails and allowing components to be reused, allowing programmers
to more effectively manage complexity in software and hardware.
While it is in principle possible for any program to be written in
machine code, it's hard to imagine some of the larger computer
programs we interact with daily being developed in such a way. By
building layers of abstraction with languages, increasingly complex
systems can be constructed.

What is programming? In essence, programming is a conununi-
cation process between one or more programmers and one or more
computer systems. Programming languages are the medium of this
communication.

Programming is not only a communication process, it is also a
translation process. Each participant in the programming process
has an internal language, both programmers and machines. In the
case of a machine, the internal language comprises the instructions
of the underlying hardware. In the case of a programmer, the inter-
nal language is far more nebulous, perhaps comprising natural and
formal languages, along with other incorporeal, abstract thoughts.

In any case, a programming language acts as the intermediate
language of translation between the participants. Programming is
the translation from a programmer’s internal language to a pro-
gramming language, and execution 1s the translaton from the
programming language to the machine’s internal language. Mc-
Cracken, in 1957, captured some of this sentiment, sayimg “Pro-
gramming [...] 1s basically a process of translating from the lan-
guage convenient to human beings to the language convenient
to the computer” where the convenient language for humans was
“mathematics or English statements of decisions to be made™ [8].
Here we consider the “language convenient to human beings™ to be
programming languages, bridging the gap between our ideas and
the underlying, low-level instructions of a computer system.

Sometimes, programming is more exploration than communi-
cation. In which case, a programmer explores and learns about a
problem by translating their internal thoughts into a program and
the re-internalising the result to gain further insight. Again the pro-
cess 1s a translational.

[tig from this view of programming, as a translation, communi-

P . T D S ST T o & T T . |



The Two Complexities

Accidental

Inherent

Inadequately supported Too easy to introduce

Both hinder scientific progress, only one Is necessary



Roadmap

1. Computer science engagement with scientists
2. New systems for abstraction and specification

3. Evolutionary approach for languages
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Abstract
Scientific models are often expressed as large and complicated programs. These programs




Validation
Did we implement the right equations?

VS
rification
Did we implement the equations right?

Challenge

Telling these two apart when results are not as expected



Software bugs undermine reproduction

Testing vs. Verification
“Smoke” testing Types
Unit testing i‘ R Stai analys;
Integration testing * Specify-and-check i’;g

= . gy g so—

Important, but incomplete Largely unexplored
(does not rule out all bugs) in climate science




natural & physical sciences

verification!

computer science



natural & physical sciences

computer science



natural & physical sciences

computer science Let’s bridge the chasm!



Approaches to verification

Full verification Partial verification
| |
. I .
Code Full Partial  Lightweight  External spec.
spec. spec. spec. (Static analysis)
Time consuming How to chose Focussed on one

Specification completeness? .
P I which parts!? aspect
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designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there

Fortran are many in computational science projects.

Language design
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1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in[2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3m to 2];
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness|[7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of

SCIENTIFIC PROGRAMMING
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Jnits-of-Measure Correctness in Fortran
2rograms

Mistral Contrastin, Andrew Rice, and Matthew Danish | University of Cambridge

Dominic Orchard | Imperial College London

uch of mathematics’ use in science revolves
around measurements of physical quantities,
both abstractly and concretely. Such measure-
ments are naturally classified by their dimen-
sion, that is, whether the measurement is of distance, energy,
time, and so on. Dimensionality is further refined by a mea-
surement’s units-of-measure (or units. for short). such as

lightweight, nonbinding specification and analysis too
can help find bugs in programs before they strike. We
that, in general, these kinds of program analysis tools w
come more widely used by scientists to save time and r
grief during the development process, as well as in
confidence in results of numerical models.

Fnsurine the consistent use of units is an impc
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Units-of-measure verification

program energy
real :: mass = 3.00, gravity = 9.91, height = 4.20
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

OO O & W N K-

Suggest
$ camfort units-suggest energyl.f90

Suggesting variables to annotate with unit specifications in 'energyl.f90'

energyl.f90: 3 variable declarations suggested to be given a

specification:
energyl.f90 (2:43) height
energyl.f90 (2:14) mass
energyl.f90 (3:14) potential_energy




Units-of-measure verification

program energy
!= unit kg :: mass
!= unit m :: height
real :: mass = 3.00, gravity = 9.91, height = 4.20
= unit kg m**x2/s*x*2 :: potential_energy
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

O 00O NO”U OV dp WD =

Check

$ camfort units-check energyl.f90

energyl.f90: Consistent. 4 variables checked.




Units-of-measure verification

program energy
!= unit kg :: mass
!= unit m :: height
real :: mass = 3.00, gravity = 9.91, height = 4.20
= unit kg m**x2/s*x*2 :: potential_energy
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

O 00O NO”U OV dp WD =

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl.{90




Units-of-measure verification

program energy
= unit kg :: mass
!= unit m :: height
= unit m/s**2 :: gravity
real :: mass = 3.00, gravity = 9.91, height = 4.20
'= unit kg m**2/s**x2 :: potential_energy
real :: potential_energy

O 00O ~NO OrVWv/Wb WD =

potential_energy = mass * gravity * height
10 end program energy

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl.{90




Check

Does it do what | think it does?

Infer
What does it do?

Synthesise

Capture what it does for documentation & future-proofing

Suggest

Where should | add a specification to get the most information?



Analysis Verification

00 Metq 0 Infer



Take home messages

* Are we done with language developments2 No! But changes slow

* Verification for:
Increasing trust
Speeding up development
Enabling reuse

* | am keen to explore more ideas in this space y @dOI’Cha rd
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