Graded types and Algebraic Effects

Dominic Orchard

University of
Kent

Institute of
Computing for
Climate Science

Harley Eades III

Daniel Marshall

Benjamin Moon

Tori Vollmer

and Declan Barnes, James Dyer, Rowan Smith, Ed Brown

Impure

State Int String
Pure

IO String

Recall the S4 axioms for modal possibility $\diamond \ldots$

$$
\begin{aligned}
\mathrm{T} & \\
4 & \rightarrow \diamond A \\
\mathrm{4} & \diamond \diamond A \\
\mathrm{~K} & \gg(A \rightarrow B) \rightarrow \diamond A
\end{aligned}
$$

Monads as a possibility modality (Benton, Bierman, de Paiva)

Impure

State Int String
Pure

IO String

Impure

 PureState Int String
String

Update Writie Read Pure

View
1 $\begin{gathered}\text { Modal } \\ \text { Type } \\ \text { Analysis }\end{gathered}$

\square

View
1 $\begin{gathered}\text { Modal } \\ \text { Type } \\ \text { Analysis }\end{gathered}$

Graded
Modal
Type
Analysis

Monoid

Effectful
$\begin{array}{cc}\text { View } \\ 1 & \\ & \\ & \text { Modal } \\ \text { Type } \\ \text { Analysis }\end{array}$

Graded
Modal
Type
Analysis
$r \in \mathscr{R}$ semiring

Intension

Extension

modalities
"what"

types
\& grades

Graded modalities (informally)

matching the shape of proofs/programs or a semantics

The Granule language

Linear types + graded modality

$r \in(\mathscr{R}, *, 1,+, 0)$ is a semiring

$$
\begin{aligned}
A, B: & =A \multimap B \mid \square_{r} A \quad \text { Non-linear value of type } A \\
& \Gamma::=\varnothing|\Gamma, x: A| \Gamma, x:[A]_{r} \\
& \text { Non-linear variable } x \text { of type } A \\
\text { e.g. } & \frac{x:[A]_{2} \vdash(x, x): A \otimes A}{\varnothing \vdash \lambda[x] .(x, x): \square_{2} A \multimap A \otimes A}
\end{aligned}
$$

(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

Linear types + graded modality

$r \in(\mathscr{R}, *, 1,+, 0)$ is a semiring

$$
\frac{\Gamma \vdash t: B}{\Gamma, x:[A]_{0} \vdash t: B} \text { weak } \quad \frac{\Gamma_{1} \vdash t: A \multimap B \quad \Gamma_{2} \vdash t^{\prime}: A}{\Gamma_{1}+\Gamma_{2} \vdash t t^{\prime}: B} \text { app }
$$

Use anytime we need to combine contexts

$$
\text { contraction }\left\{\begin{aligned}
\Gamma_{1}+\left(\Gamma_{2}, x: A\right) & =\left(\Gamma_{1}+\Gamma_{2}\right), x: A \text { if } x \notin\left|\Gamma_{1}\right| \\
\Gamma_{1}, x: A+\Gamma_{2} & =\left(\Gamma_{1}+\Gamma_{2}\right), x: A \text { if } x \notin\left|\Gamma_{2}\right| \\
\left(\Gamma_{1}, x:[A]_{r}\right)+\left(\Gamma_{2}, x:[A]_{s}\right) & =\left(\Gamma_{1}+\Gamma_{2}\right), x:[A]_{r+s}
\end{aligned}\right.
$$

Modal rule 1 - Dereliction
Treat a linear variable as

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma, x:[A]_{1} \vdash t: B} \operatorname{der}
$$

Modal rule 2 - Promotion

$$
\frac{[\Gamma] \vdash t: B}{r^{*}[\Gamma] \vdash[t]: \square_{r} B} \mathrm{pr}
$$

Non-linear results require non-linear variables (promotion)

Modal rule 3 - Cut

$$
\frac{\Gamma \vdash t_{1}: \square_{r} A \quad \Delta, x:[A]_{r} \vdash t_{2}: B}{\Gamma+\Delta \vdash \operatorname{let}[x]=t_{1} \operatorname{in} t_{2}: B} \text { cut }
$$

Composition (substitution) of non-linear value into non-linear variable

Semirings

Nat	Semiring	
Level	Semiring	\{Private, Public\} or \{ Hi, Lo\}
Q	Semiring	(see examples/scale.gr)
LNL	Semiring	\{Zero, One, Many\}
Cartesian	Semiring	\{Any\}
Set	Type -> Semiring	(see examples/sets.gr)
Set0p	Type -> Semiring	
Ext	Semiring -> Semiring	(Ext $\mathscr{R}=\mathscr{R} \cup\{\infty\}$)
Interval	Semiring -> Semiring	
${ }_{-}{ }_{-}$	Semiring -> Semiring	Semiring

https://granule-project.github.io/docs

Combining semirings

Two layers of grading...
f : (Vec ... Patient) [0..1] -> ...
f [Cons (Patient [city] [_])] = ...

....generates the context
city : . [String]. ([0..1] × Public)

Some principles

- No Low magic
- Build things from theoretical elements
- Light syntax
- Interleave type checking and SMT
- CBV as (primary) semantics (but swappable in interpreter)

Graded possibility / monads $f \in(X, \circledast, I)$ is a monoid

$\Gamma \vdash e: A$
$\Gamma \vdash$ pure $e: \mho_{I} A$

$$
\frac{\Gamma_{1} \vdash e_{1}: \mho_{f} A \quad \Gamma_{2}, x: A \vdash e_{2}: \mho_{g} B}{\Gamma_{1}+\Gamma_{1} \vdash \text { let } x \leftarrow e_{1} \text { in } e_{2}: \diamond_{f \circledast_{8}} A}
$$

$\diamond x A$ written in Granule as $\mathrm{A}\langle\mathrm{x}>$

Effect-set-graded possibility
$(X, \circledast, I)=(\mathscr{P}($ IOlabels $), \cup, \varnothing)$
$(X, *, I)=(\mathbb{N},+, 0)$

Katsumata - Parametric effect monads and semantics of effect systems (2014)
O, Petricek, Mycroft - The semantic marriage of effects and monads (2014)

Algebraic effects \& handlers

Computation tree
flipCoin

fumble

Represent via free monad over signature Σ

> data Game0ps r where
> FlipCoin : () \rightarrow (Bool \rightarrow r) \rightarrow GameOps r;
> Fumble : () \rightarrow (Void \rightarrow r) \rightarrow GameOps
comp : Free Game0ps (Bool, Bool)
Handler to interpret (e.g., into a monad)

$$
\begin{array}{r}
\text { handle }:(\mathrm{a}+\text { Game0ps b }->\text { b) } \\
->\text { Free Game0ps a }->\text { b }
\end{array}
$$

handle h
Free Game0ps a b

Graded free monad

(For some signature functor Σ)

$$
\text { eff : Effect } \vdash \Sigma: \text { eff } \rightarrow \text { Type } \rightarrow \text { Type }
$$

Constructors
pure : $A \multimap\rangle_{\mathrm{Eff}_{\mathrm{E}(I)}} A$
impure : $\left.\left.\Sigma f(\rangle_{\mathrm{Eff}_{\mathrm{E}}(g)} A\right) \multimap\right\rangle_{\mathrm{Eff}_{\mathrm{E}}(f \circledast g)} A$
(where Eff : $\{$ eff : Effect $\} \rightarrow(\Sigma:$ eff \rightarrow Type \rightarrow Type $) \rightarrow(f:$ eff $) \rightarrow$ Type $)$

Generic effect operation

$$
\text { eff : Effect } \vdash \Sigma: \text { eff } \rightarrow \text { Type } \rightarrow \text { Type }
$$

$$
\frac{\Gamma \vdash t:\left(I \multimap \square_{r}(O \multimap R)\right) \multimap \Sigma f R}{\Gamma \vdash \operatorname{call} t: I \multimap \bigvee_{\mathrm{Eff}(\Sigma, f)} O}
$$

call : forall \{eff : Effect, s : Semiring, ord : s, i : Type, o : Type, r : Type, sig : eff \rightarrow Type \rightarrow Type, e : eff\}
. (i -> (o -> r) [grad] -> sig e r)
-> i -> o <Eff eff sig e>

Graded types \bowtie Algebraic effects and handlers

$$
\frac{\Gamma \vdash t: \square_{0 . . \omega}(\forall(e: e f f) . \Sigma e B \multimap B) \quad \Gamma \vdash t^{\prime}: A \multimap B}{\Gamma \vdash \text { handle } t t^{\prime}: \widehat{V E f f}(\Sigma, f) A \multimap B}
$$

(together t and t^{\prime} are a family of $(\Sigma+-)$ algebras, for every e)

Graded types \bowtie Algebraic effects and handlers

$$
\overline{\Gamma \vdash t: \square_{0 . . \omega}(\forall(e: e f f) . \Sigma e B \multimap B) \quad \Gamma \vdash t^{\prime}: A \multimap B}
$$

$\Gamma \vdash$ handle $\left.t t^{\prime}:\right\rangle_{\mathrm{Eff}(\Sigma, f)} A \multimap B$

```
handle : forall {eff : Effect, sig : eff -> Type -> Type
    , a b : Type, e : eff}
```

Functor

. (a -> b) [0..Inf] \rightarrow sig l a \rightarrow sig l b))) [0..Inf])
--- ^ functoriality of sig

$$
\begin{aligned}
& \text {-> (forall \{l : eff\} . sig l b } \rightarrow \text { b) [0..Inf] } \\
& \rightarrow(a->b) \\
& ->(a+\text { sig })-a l g e b r a \\
& \rightarrow a<E f f \text { eff sig e> } \\
& \rightarrow \text { b }
\end{aligned}
$$

Graded algebras... (wip)

$$
\frac{\Gamma \vdash t: \square_{0 . . \omega}(\forall(e, f: e f f) . \Sigma e(B f) \multimap B(e \circledast f)) \quad \Gamma \vdash t^{\prime}: A \multimap B I}{\Gamma \vdash \text { handleGr } t t^{\prime}: \widehat{V E f f}(\Sigma, f) A \multimap B f}
$$

```
handleGr : forall \{... b : Set labels -> Type\}
    . (fmap :...)
    -> (forall \{l j : Set labels\} . sig (b j) l -> b (j * l)) [0..Inf])
    -> (a -> b \{\})
    --- ^ (a + sig) - graded algebra
    -> a <Eff labels sig e>
    -> b e
```


Take home messages re effects

- A.E.H. + graded linear types to control continuation use
- Fine-grained single-shot vs multi-shot control
- Next steps:
- More implementation to enable graded-algebras
- Layering

Graded types in Haskell (GHC 9)

\{-\# LANGUAGE LinearTypes \#-\}

					cf. linear-base:		
$a \% r \rightarrow b$	Linear	a	\%One \rightarrow b		a		\rightarrow b
-					a	in]	-> b

$$
\text { Unrestricted a \%Many } \rightarrow \text { b a [Many] } \rightarrow \text { b }
$$

Graded modality
data Box r a where \{ Box : : a \%r-> Box r a \}

Graded-base coeffects

$A::=A \xrightarrow{r} B$

$\Delta::=\emptyset \mid \Delta, x:_{r} A$

2013 - Petricek, O, Mycroft
 Coeffects: Unified Static Analysis of Context-Dependence

2014 - Petricek, O, Mycroft

Coeffects: a calculus of context-dependent computation.

2016 - McBride

I Got Plenty o' Nuttin'

2017 - Bernardy, Boespflug, Newton, Peyton Jones, Spiwack
Linear Haskell: practical linearity in a higher-order polymorphic language

2018 - Atkey
Syntax and Semantics of Quantitative Type Theory.

2021 - Abel, Bernardy

A unified view of modalities in type systems

Linear-base coeffects

$A::=A \multimap B \mid \square_{r} A$
$\Gamma::=\emptyset|\Gamma, x: A| \Gamma, x:[A]_{r}$

2014 - Ghica, Smith
 Bounded linear types in a resource semiring

2014 - Brunel, Gaboardi, Mazza, Zdancewic
A Core Quantitative Coeffect Calculus
2016 - Gaboardi, Katsumata, O, Breuvart, Uustalu
Combining effects \& coeffects via grading

2019 - O, Liepelt, Eades

Quantitative program reasoning with graded modal types

+ a lot of work from the Granule project
language GradedBase
A \% r -> B

Resourceful Prog Graded L

Jack Hughes ${ }^{(\boxtimes)}{ }^{(1)}$ a
School of Computing, Univ
\{joh6,d.a.orc

Program Synthesis from Graded Types

Jack Hughes ${ }^{1}$ (凶) © and Dominic Orchard ${ }^{1,2}$ (©
${ }^{1}$ University of Kent, Canterbury, UK
${ }^{2}$ University of Cambridge, Cambridge, UK

Abstract. Graded type systems are a class of type system for finegrained quantitative reasoning about data-flow in programs. Through the use of resource annotations (or grades), a programmer can express various program properties at the type level, reducing the number of typeable programs. These additional constraints on types lend themselves naturally to type-directed program synthesis, where this information can be exploited to constrain the search space of programs. We present a synthesis algorithm for a graded type system, where grades form an arbitrary pre-ordered semiring. Harnessing this grade information in synthesis is non-trivial, and we explore some of the issues involved in designing and implementing a resource-aware program synthesis tool. In our evaluation we show that by harnessing grades in synthesis, the majority of our benchmark programs (many of which involve recursive functions over recursive ADTs) require less exploration of the synthesis search space than a purely type-driven approach and with fewer needed input-output examples. This type-and-graded-directed approach is demonstrated for the

Linearity and Uniqueı

Daniel Marshall ${ }^{1}$ (凶) © (0), Michael

${ }^{1}$ University of \{dm635,m.vollmer,
${ }^{2}$ University

[^0]
Functional Ownership through Fractional Uniqueness

DANIEL MARSHALL, University of Kent, United Kingdom
DOMINIC ORCHARD, University of Kent, United Kingdom and University of Cambridge, United Kingdom
Ownership and borrowing systems, designed to enforce safe memory management without the need for garbage collection, have been brought to the fore by the Rust programming language. Rust also aims to bring some guarantees offered by functional programming into the realm of performant systems code, but the type system is largely separate from the ownership model, with type and borrow checking happening in separate compilation phases. Recent models such as RustBelt and Oxide aim to formalise Rust in depth, but there is less focus on integrating the basic ideas into more traditional type systems. An approach designed to expose an essential core for ownership and borrowing would open the door for functional languages to borrow concepts found in Rust and other ownership frameworks, so that more programmers can enjoy their benefits.

One strategy for managing memory in a functional setting is through uniqueness types, but these offer a coarse-grained view: either a value has exactly one reference, and can be mutated safely, or it cannot, since other references may exist. Recent work demonstrates that linear and uniqueness types can be combined in a single system to offer restrictions on program behaviour and guarantees about memory usage. We develop this connection further, showing that just as graded type systems like those of Granule and Idris generalise linearity, a Rust-like ownership model arises as a graded generalisation of uniqueness. We combine fractional permissions with grading to give the first account of ownership and borrowing that smoothly integrates into a standard type system alongside linearity and graded types, and extend Granule accordingly with these ideas.

Uniqueness and Linearity together

Unique

 sharingCartesian

dereliction

Unique values have only own "owner"

Cartesian values under comonadic ! modality (Abitrary use)

Linear values must be used once

Graded uniqueness (the third flavour...)

+ primitives for borrowing, mutable borrowing by splitting/joining lifetimes
e.g. split : $\&_{p} A \multimap \&_{\frac{p}{2}} A \otimes \&_{\frac{p}{2}} A$
(follow Daniel Marshall's work -> https://starsandspira.Is/)

Download and play!

https://granule-project.github.io/

Some more resources here from recent summer school material https://granule-project.github.io/splv23

Quantitative program reasoning with graded modal types
DOMINIC ORCHARD, University of Kent, UK
VILEM-BENJAMIN LIEPELT, University of Kent, UK
HARLEY EADES III, Augusta University, USA
In programming, data is often considered to be
unconstrained. However this view is naïve: some data encapsulates ande, arbitrarily discardable, and universally file and device 36 ndles, channels); some data should not be andates resources that are subject to protocols (eg data). Linear types provide a partial remedy by delineating darbity copied or communicated (e.g., private never copied or discarded, and unconstrained values. However this two camps: "resources" to be used but Instead, we propose the general notion of graded values. However, this binary distinction is too coarse-grained types, provides an expressival notion of graded modal typeser, which in combination wis too coarse-grained. types, provides an expressive type theory for enforcing fine-grained combination with linear and indexed
present a type system present a type system drawing together these aspects (linear, graded, and inderee-like properties of data. We
functional language implex functional language implementation, called Granule. We detail the and indexed) embodied in a fully-fledged
properties, and exple properties, and explore examples in the concrete language. This work advances including its metatheoretic
the reach of type systems to

Shout out to many others working on (/ who have worked) on graded types!

- Andreas Abel
- Jean-Philippe Bernardy
- Shin-ya Katsumata
- Dylan McDermott
- Tarmo Uustalu
- Riccardo Biancinni
- Frank Pfenning
- Stephanie Weirich
- Marco Gaboardi
- Flavien Bruevart
- Francesco Dagnino
- Paola Giannini
- Elena Zucca
- Bob Atkey
- James Wood
- Dan Ghica
- Conor McBride
- AND MORE

[^0]: Abstract. Substructural type cause they allow for a resourcef used to rule out various softwa nally taking hold in modern proॄ roughly based on Girard's linear arrows, Clean has uniqueness ty] at most a single reference to the system for guaranteeing memor of resourceful type systems, the of their relative strengths and v frameworks can be unified. The earity and uniqueness are essent one another, or somewhere in 1 lationship between these two w building on two distinct bodies and advantageous to have both li

