

granule-project.github.io

Graded types
and Algebraic Effects

8th March 2024 - SREPLS-14

Dominic Orchard

https://granule-project.github.io/
https://granule-project.github.io/

Harley Eades IIIWith thanks to…

Michael Vollmer

Tori Vollmer

Daniel Marshall

Jack Hughes

Vilem Liepelt

Benjamin Moon

and Declan Barnes, James Dyer, Rowan Smith, Ed Brown

3

IO String

StringState Int String

PureImpure

♢(A → B) → ♢A → ♢B

A → ♢A

♢♢A → ♢A

4

Recall the S4 axioms for modal possibility ...◊

T
4

K

Monads as a possibility modality (Benton,
Bierman, de Paiva)

5

IO String

StringState Int String

PureImpure

6

StringState Int String

PureImpure

Update Write Read Pure

Modal
Type

Analysis

Graded
Modal
Type

Analysis

7

Modal
Type

Analysis

Graded
Modal
Type

Analysis

8

Pure Effectful

MAA

Pure Effectful

f ◊ A f ∈ ℳ
Monoid

Modal
Type

Analysis

9

linear non-linear

!AA

Graded
Modal
Type

Analysis

linear non-linear

r ! A r ∈ ℛ
semiring

modalities
& grades

types

“what”“how”

ExtensionIntension

10

data Vec (n : Nat) (a : Type) where

 Nil : Vec 0 a;

 Cons : forall {n : Nat} . a -> Vec n a -> Vec (n+1) a

--- Map function

map : forall {a b : Type, n : Nat} . (a -> b) [n] -> Vec n a -> Vec n b

map [_] Nil = Nil;

map [f] (Cons x xs) = Cons (f x) (map [f] xs)

sequence : forall {n : Nat} . Vec n (() <{Stdout}>) -> () <{Stdout}>

sequence Nil = pure ();

sequence (Cons m xs) = let () <- m in sequence xs

printPerLine : forall {a : Type, n : Nat}

 . Vec n Char -> () <{Stdout}>

printPerLine xs =

 sequence (map [\x -> toStdout (stringAppend (showChar x) ("\n"))] xs)

…

♢XA
♢YA

♢WA
♢ZA

…

☐RA ☐SA

☐TA☐UA

☐PA

Indexed

families

with structure
matching the shape of proofs/programs or a semantics

♢A ☐A

11

Graded modalities (informally)

Discharge
constraints

automatically

SMT solver

anule language

Precision
Indexed

types
+

Data as
resource

Linear
types

Quantitative
reasoning

+
Graded
types

The
GADTs

SREPLS

A, B ::= A ⊸ B ∣ □r A Non-linear value of type A

Non-linear variable x of type A

Γ ::= ∅ ∣ Γ, x : A ∣ Γ, x : [A]r

Linear types + graded modality
r ∈ (R, , 1, +, 0) is a semiring*

x : [A]2 ⊢ (x, x) : A ⊗ A
∅ ⊢ λ[x] . (x, x) : □2 A ⊸ A ⊗ A

e.g.

(2013) Petricek, O, Mycroft - Coeffects: Unified Static Analysis of Context-Dependence
(2014) Ghica, Smith - Bounded linear types in a resource semiring
(2014) Brunel, Gaboardi, Mazza, Zdancewic - A Core Quantitative Coeffect Calculus

Γ1 ⊢ t : A ⊸ B Γ2 ⊢ t′ : A
Γ1 + Γ2 ⊢ t t′ : B

𝖺𝗉𝗉

Γ1, x : A + Γ2 = (Γ1 + Γ2), x : A if x ∉ |Γ2 |
Γ1 + (Γ2, x : A) = (Γ1 + Γ2), x : A if x ∉ |Γ1 |

(Γ1, x : [A]r) + (Γ2, x : [A]s) = (Γ1 + Γ2), x : [A]r+s

{contraction

Use anytime we need to combine contexts

Linear types + graded modality

Γ ⊢ t : B
Γ, x : [A]0 ⊢ t : B

𝗐𝖾𝖺𝗄

r ∈ (R, *, 1, +, 0) is a semiring

16

Treat a linear variable as
non-linear 

(dereliction)

Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
𝖽𝖾𝗋

Modal rule 1 - Dereliction

Modal rule 2 - Promotion Non-linear results
require non-linear

variables

(promotion)

[Γ] ⊢ t : B
r * [Γ] ⊢ [t] : □r B

𝗉𝗋

Modal rule 3 - Cut

Γ ⊢ t1 : □r A Δ, x : [A]r ⊢ t2 : B
Γ + Δ ⊢ 𝗅𝖾𝗍 [x] = t1 𝗂𝗇 t2 : B

𝖼𝗎𝗍

Composition
(substitution) of
non-linear value

into non-linear
variable

A core quantitative coeffect calculus [Brunel et al. ‘14]

Semirings
Nat : Semiring
Level : Semiring {Private, Public} or {Hi, Lo}

Q : Semiring (see examples/scale.gr)

LNL : Semiring {Zero, One, Many}

Cartesian : Semiring {Any}

Set : Type -> Semiring (see examples/sets.gr)
SetOp : Type -> Semiring

Ext : Semiring -> Semiring (Ext =)
Interval : Semiring -> Semiring

 : Semiring -> Semiring -> Semiring

ℛ ℛ ∪ {∞}

_ × _
17

http://scale.gr
http://sets.gr

https://granule-project.github.io/docs

https://granule-project.github.io/docs

19

f : (Vec … Patient) [0..1] -> …

f [Cons (Patient [city] [_])] = …

Two layers of grading…

Public 0..1

city : .[String]. ([0..1] × Public)

….generates the context

Combining semirings

• No Low magic

• Build things from theoretical elements

• Light syntax

• Interleave type checking and SMT

• CBV as (primary) semantics (but swappable in interpreter)

Some principles

20

♢x A written in Granule as A < x >

Graded possibility / monads f ∈ (X, , I) is a monoid⊛

Katsumata - Parametric effect monads and semantics of effect systems (2014)

O, Petricek, Mycroft - The semantic marriage of effects and monads (2014)
21

Γ ⊢ e : A
Γ ⊢ pure e : ◊IA

Γ1 ⊢ e1 : ◊f A Γ2, x : A ⊢ e2 : ◊gB

Γ1 + Γ1 ⊢ let x ← e1 in e2 : ◊f⊛gA

Effect-set-graded possibility (X, , I) = ((IOlabels), ,)⊛ 𝒫 ∪ ∅
-graded possibilityℕ (X, , I) = ()⊛ ℕ, + ,0

Algebraic effects & handlers

flipCoin

flipCoinfumble

true

pure pure

falsetrue

Computation tree Represent via free monad over signature Σ
data GameOps r where
 FlipCoin : () -> (Bool -> r) -> GameOps r;
 Fumble : () -> (Void -> r) -> GameOps r

comp : Free GameOps (Bool,Bool)
false

Handler to interpret (e.g., into a monad)
handle : (a + GameOps b -> b)
 -> Free GameOps a -> b

handle h
bFree GameOps a

22

𝗉𝗎𝗋𝖾 : A ⊸ ◊𝖤𝖿𝖿Σ(I)A
𝗂𝗆𝗉𝗎𝗋𝖾 : Σ f (◊𝖤𝖿𝖿Σ(g)A) ⊸ ◊𝖤𝖿𝖿Σ(f⊛g)A

Graded free monad

eff : 𝖤𝖿𝖿𝖾𝖼𝗍 ⊢ Σ : eff → 𝖳𝗒𝗉𝖾 → 𝖳𝗒𝗉𝖾
(For some signature functor)Σ

Constructors

(where)𝖤𝖿𝖿 : {eff : 𝖤𝖿𝖿𝖾𝖼𝗍} → (Σ : eff → 𝖳𝗒𝗉𝖾 → 𝖳𝗒𝗉𝖾) → (f : eff) → 𝖳𝗒𝗉𝖾

23

24

Γ ⊢ t : (I ⊸ □r (O ⊸ R)) ⊸ Σ f R
Γ ⊢ 𝖼𝖺𝗅𝗅 t : I ⊸ ◊𝖤𝖿𝖿(Σ,f)O

Generic effect operation
eff : 𝖤𝖿𝖿𝖾𝖼𝗍 ⊢ Σ : eff → 𝖳𝗒𝗉𝖾 → 𝖳𝗒𝗉𝖾

call : forall {eff : Effect, s : Semiring, grd : s, i : Type, o :
Type, r : Type, sig : eff -> Type -> Type, e : eff}

 . (i -> (o -> r) [grd] -> sig e r)

 -> i -> o <Eff eff sig e>

Graded types Algebraic effects and handlers⋈

25

Γ ⊢ t : □0..ω (∀(e : eff) . Σ e B ⊸ B) Γ ⊢ t′ : A ⊸ B
Γ ⊢ 𝗁𝖺𝗇𝖽𝗅𝖾 t t′ : ◊𝖤𝖿𝖿(Σ,f)A ⊸ B

(together and are a family of (+ -) algebras, for every)t t′ Σ e

Graded types Algebraic effects and handlers⋈

26

Γ ⊢ t : □0..ω (∀(e : eff) . Σ e B ⊸ B) Γ ⊢ t′ : A ⊸ B
Γ ⊢ 𝗁𝖺𝗇𝖽𝗅𝖾 t t′ : ◊𝖤𝖿𝖿(Σ,f)A ⊸ B

handle : forall {eff : Effect, sig : eff -> Type -> Type
 , a b : Type, e : eff}

 . (fmap : (forall {a b : Type} {l : eff}
 . (a -> b) [0..Inf] -> sig l a -> sig l b))) [0..Inf])
 --- ^ functoriality of sig

 -> (forall {l : eff} . sig l b -> b) [0..Inf]
 -> (a -> b)
 --- ^ (a + sig) - algebra

 -> a <Eff eff sig e>
 -> b

Functor

Handler

handleGr : forall {… b : Set labels -> Type}
 . (fmap :…)

 -> (forall {l j : Set labels} . sig (b j) l -> b (j * l)) [0..Inf])
 -> (a -> b {})
 --- ^ (a + sig) - graded algebra

 -> a <Eff labels sig e>
 -> b e

Graded algebras… (wip)
Γ ⊢ t : □0..ω (∀(e, f : eff) . Σ e (Bf) ⊸ B(e ⊛ f)) Γ ⊢ t′ : A ⊸ BI

Γ ⊢ 𝗁𝖺𝗇𝖽𝗅𝖾𝖦𝗋 t t′ : ◊𝖤𝖿𝖿(Σ,f)A ⊸ Bf

27

Take home messages re effects

28

• A.E.H. + graded linear types to control continuation use

• Fine-grained single-shot vs multi-shot control

• Next steps:

• More implementation to enable graded-algebras

• Layering

Graded types in Haskell (GHC 9)

a %r -> b

Graded arrow

{-# LANGUAGE LinearTypes #-}

a %One -> b Linear

a %Many -> b Unrestricted

cf. linear-base:

a -> b

a [Many] -> b

a [Lin] -> b

(2017) - Bernardy, Boespflug, Newton, Peyton Jones, Spiwak - Linear Haskell: practical linearity in a higher-order polymorphic language.

data Box r a where { Box :: a %r-> Box r a }

Graded modality

29

30

Graded-base coeffects Linear-base coeffects

2014 - Ghica, Smith
 Bounded linear types in a resource semiring

2014 - Brunel, Gaboardi, Mazza, Zdancewic
 A Core Quantitative Coeffect Calculus

2019 - O, Liepelt, Eades
 Quantitative program reasoning with graded modal types
 …….

2016 - Gaboardi, Katsumata, O, Breuvart, Uustalu
 Combining effects & coeffects via grading

+ a lot of work from the
Granule project

2013 - Petricek, O, Mycroft
 Coeffects: Unified Static Analysis of Context-Dependence

2014 - Petricek, O, Mycroft
 Coeffects: a calculus of context-dependent computation.

2017 - Bernardy, Boespflug, Newton, Peyton Jones, Spiwack
 Linear Haskell: practical linearity in a higher-order polymorphic
language

2016 - McBride
 I Got Plenty o’ Nuttin’

2018 - Atkey
 Syntax and Semantics of Quantitative Type Theory.

2021 - Abel, Bernardy
 A unified view of modalities in type systems

x : A `l x : A
varL

�, x : A `l t : B

� `l �x .t : A (B
absL

�1 `l t1 : A (B �2 `l t2 : A

�1 + �2 `l t1t2 : B
appL

� `l t : A graded(�0, 0)

�,�0 `l t : A
weakL

�, x : A `l t : B

�, x : [A]1 `l t : B
derL

� `l t : A graded(�)

r ·� `l [t] : ⇤rA
prL

�1 `l t1 : ⇤rA �2, x : [A]r `l t2 : B

�1 + �2 `l let [x] = t1 in t2 : B
letL

2.2 Graded base calculus

The syntax of terms for the graded base calculus is exactly the same as that of
the linear base, and so t ranges over graded-base terms and x over graded-base
variables. The syntax of types is however di↵erent:

A ::= A
r�! B | ⇤rA (types)

� ::= ; | �, x :r A (contexts)

x :1 A `g x : A
varG

�, x :r A `g t : B

� `g �x .t : A
r�! B

absG
�1 `g t1 : A

r�! B �2 `g t2 : A

�1 + r ·�2 `g t1t2 : B
appG

� `g t : A

�, 0·�0 `g t : A
weakG

� `g t : A

r ·� `g [t] : ⇤rA
prG

�1 `g t1 : ⇤rA �2, x :r A `g t2 : B

�1 +�2 `g let [x] = t1 in t2 : B
letG

Operational semantics DO: call by name rules

Lemma 2 (Admissiiblity of subsitution). If �1 `g t1 : A �2, x :r A `g t2 : B
then �1 + r ·�2 `g [t1/x]t2 : B .

3 Translation

DO: Do we need to translate entire typing derivations, or can we translate
context, types, and terms separately, and then have a type soundness theorem
after?

3

and answer a long-standing open question about the relationship between the
two flavours of grading.

2 The two calculi

2.1 Linear base calculus

Syntax DO: TODO; fill in

t ::= x | t1t2 | �x .t | [t] | let [x] = t1 in t2 (terms)

A ::= A (B | ⇤rA (types)

Typing Typing judgments of the form � `l t : A relate a context �, term t ,
and type A. Contexts comprise linear and graded assumptions, of the form:

� ::= ; | �, x : A | �, x : [A]r (contexts)

where x : A denotes a linear assumption and x : [A]r denotes a graded assump-
tion with grade r drawn from a pre-ordered semiring (R, ⇤, 1,+, 0,v) parame-
terising the calculus.

Contexts can be ‘added’ if they are disjoint in their linear assumptions and
by using semiring addition to combine grades of any graded assumptions shared
between two contexts:

Definition 1 (Context addition). DO: specificational form?

We define two predicates for denoting contexts containing only graded as-
sumptions and those containing graded assumptions all with the same grade:

Definition 2 (Graded contexts). VL: We use this notation only as a predicate
now. A context � is written as graded(�) if it contains only graded assumptions,
and graded(�, r) if its contains only graded assumptions which of grade r . These
predicates are defined inductively as: VL: TODO: insert inductive definition of
each predicate

Lastly, contexts which contain only graded assumptions can be scaled by a
graded:

Definition 3 (Scalar multiplication). Given a context which is graded, i.e.,
graded(�) then its scalar multiplication is defined:

r ·; = ; r ·(�, x : [A]s) = (r ·�), x : [A](r⇤s)

Typing is then defined in Figure 2.1.

Lemma 1 (Admissiiblity of subsitution). There are two kinds of admissible
substitution properties:

1. (Linear) If �1 `l t1 : A and �2, x : A `l t2 : B then �1+�2 `l [t1/x]t2 : B ;

2. (Graded) If �1 `l t1 : A and graded(�1) and �2, x : [A]r `l t2 : B then
�1 + r ·�2 `l [t1/x]t2 : B .

Operational semantics DO: call by name rules

2

and answer a long-standing open question about the relationship between the
two flavours of grading.

2 The two calculi

2.1 Linear base calculus

Syntax DO: TODO; fill in

t ::= x | t1t2 | �x .t | [t] | let [x] = t1 in t2 (terms)

A ::= A (B | ⇤rA (types)

Typing Typing judgments of the form � `l t : A relate a context �, term t ,
and type A. Contexts comprise linear and graded assumptions, of the form:

� ::= ; | �, x : A | �, x : [A]r (contexts)

where x : A denotes a linear assumption and x : [A]r denotes a graded assump-
tion with grade r drawn from a pre-ordered semiring (R, ⇤, 1,+, 0,v) parame-
terising the calculus.

Contexts can be ‘added’ if they are disjoint in their linear assumptions and
by using semiring addition to combine grades of any graded assumptions shared
between two contexts:

Definition 1 (Context addition). DO: specificational form?

We define two predicates for denoting contexts containing only graded as-
sumptions and those containing graded assumptions all with the same grade:

Definition 2 (Graded contexts). VL: We use this notation only as a predicate
now. A context � is written as graded(�) if it contains only graded assumptions,
and graded(�, r) if its contains only graded assumptions which of grade r . These
predicates are defined inductively as: VL: TODO: insert inductive definition of
each predicate

Lastly, contexts which contain only graded assumptions can be scaled by a
graded:

Definition 3 (Scalar multiplication). Given a context which is graded, i.e.,
graded(�) then its scalar multiplication is defined:

r ·; = ; r ·(�, x : [A]s) = (r ·�), x : [A](r⇤s)

Typing is then defined in Figure 2.1.

Lemma 1 (Admissiiblity of subsitution). There are two kinds of admissible
substitution properties:

1. (Linear) If �1 `l t1 : A and �2, x : A `l t2 : B then �1+�2 `l [t1/x]t2 : B ;

2. (Graded) If �1 `l t1 : A and graded(�1) and �2, x : [A]r `l t2 : B then
�1 + r ·�2 `l [t1/x]t2 : B .

Operational semantics DO: call by name rules

2

 language GradedBase

A % r -> B

31

32

LOPSTR 2020
ESOP 2024

Linearity and Uniqueness: An Entente Cordiale

Daniel Marshall1 (!) , Michael Vollmer1 , and Dominic Orchard1,2

1 University of Kent, Canterbury, UK
{dm635,m.vollmer,d.a.orchard}@kent.ac.uk

2 University of Cambridge, UK

Abstract. Substructural type systems are growing in popularity be-
cause they allow for a resourceful interpretation of data which can be
used to rule out various software bugs. Indeed, substructurality is fi-
nally taking hold in modern programming; Haskell now has linear types
roughly based on Girard’s linear logic but integrated via graded function
arrows, Clean has uniqueness types designed to ensure that values have
at most a single reference to them, and Rust has an intricate ownership
system for guaranteeing memory safety. But despite this broad range
of resourceful type systems, there is comparatively little understanding
of their relative strengths and weaknesses or whether their underlying
frameworks can be unified. There is often confusion about whether lin-
earity and uniqueness are essentially the same, or are instead ‘dual’ to
one another, or somewhere in between. This paper formalises the re-
lationship between these two well-studied but rarely contrasted ideas,
building on two distinct bodies of literature, showing that it is possible
and advantageous to have both linear and unique types in the same type
system. We study the guarantees of the resulting system and provide
a practical implementation in the graded modal setting of the Granule
language, adding a third kind of modality alongside coeffect and effect
modalities. We then demonstrate via a benchmark that our implementa-
tion benefits from expected efficiency gains enabled by adding uniqueness
to a language that already has a linear basis.

Keywords: linear types · uniqueness types · substructural logic

1 Introduction

Linear types [15, 57] and uniqueness types [5, 47] are two influential and long-
standing flavours of substructural type system. As these approaches have devel-
oped, it has become clear in the community (both in folklore and the literature)
that these are closely related ideas. For example, the chapter on substructurality
in Advanced Topics in Types and Programming Languages [62] describes unique-
ness types as “a variant of linear types”. This framing is supported by various
works which, for example, make reference to “a form of linearity (called unique-
ness)” [33] or other such statements of equality or similarity [38].

But reading a different set of papers gives a contrasting impression that
linearity and uniqueness are not the same but in some sense dual to one another,

c© The Author(s) 2022
I. Sergey (Ed.): ESOP 2022, LNCS 13240, pp. 346–375, 2022.
https://doi.org/10.1007/978-3-030-99336-8_13

ESOP 2022

OOPSLA 2024

Uniqueness and Linearity together

Linear values must be

used onceLinear a

Unique

!a Cartesian

*a
sharing

dereliction

Cartesian values under

comonadic ! modality

(Abitrary use)

Unique values have

only own “owner”

9/20

Graded uniqueness (the third flavour…)
* A

&*A
Uniquely owned A p ∈ (0,1) ⊂ ℚ

Immutable borrow

&pA &1A
Mutable borrow

(follow Daniel Marshall’s work -> https://starsandspira.ls/)

+ primitives for borrowing,
mutable borrowing by

splitting/joining lifetimes
e.g. 𝗌𝗉𝗅𝗂𝗍 : &pA ⊸ &p

2
A ⊗ &p

2
A

https://starsandspira.ls/

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

� ` A0 ⇠ A B �1 � ` �1B ⇠ �1B0 B �2

� ` A ! B ⇠ A0 ! B0 B �1] �2
U!

� ` A ⇠ A0 B �1 � ` �1B ⇠ �1B0 B �2

� ` AB ⇠ A0 B0 B �1] �2
U���

(� : �) 2 �

� ` � ⇠ � B ;
U���=

� ` A : � (� :9 �) 2 �

� ` � ⇠ A B � 7! A
U���9 � ` K ⇠ K B ;

U���
� ` A : �

� ` A ⇠ A B ;
U=

� ` A ⇠ A0 B � � ` �� ⇠ �� 0 B � 0

� ` ⌃�A ⇠ ⌃�0A0 B �] � 0
U⌃

� ` A ⇠ A0 B � � ` �c ⇠ �c0 B � 0

� ` ⇤cA ⇠ ⇤c0A0 B �] � 0
U⇤

Fig. 2. Type unification rules

Type uni�cation is given by relation � ` A ⇠ B B � in Figure 2. Uni�cation is essentially a

congruence over the structure o
f types (under a context �), crea

ting substitutions from uni�cation

variables to types, e.g. (U���9) for � ⇠ A (which has a symmetric counterpart for A ⇠ � elided

here for brevity). Universally quanti�ed variables can be uni�ed with themselves (U���=), and also

with uni�cation variables via (U���9). In multi-premise rules, substitutions generat
ed by unifying

subterms are then applied to types being uni�ed in later premises, e.g., as in (U!). Type uni�cation

extends to grading terms, which can also contain type variables. We elide the de�nition here since

it is straightforward and follows a similar scheme to the �gure.

Substitutions can be typed by a type-variable environment, � ` � (called compatibility) which

ensures that � is well-formed for use in a particular context. Compatibility is a meta-theoretic

property, which follows from our rules. Two substitutions �1
and �2 may be combined as �1] �2

when they are both compatible with the same type-variable environment � (i.e., � ` �1 and � ` �2).

If � 7! A 2 �1 and � 7! B 2 �2 and if A and B are uni�able � ` A ⇠ B B � then the combined

substitution �1] �2 has � 7! �A and also now includes � . For example:

(� 7! (Int ⇥ �))] (� 7! (� ⇥ Char)) = � 7! (Int ⇥ Char), � 7! Char,� 7! Int

If two substitutions for the same variable cannot be uni�ed, the
n context composition is unde�ned,

indicating a type error which is reported to the user in the implementation. Disjoint parts of a

substitution are simply concatenated. Composition also computes the transitive closure of
the

resulting substitution. The app
endix (De�nition ??) gives the full de�nition.

By lifting types to kinds with ", polymorphism in the type of grades is also possible, e.g.

poly : 8 {a : Type, k : Coeffect, c : k} . a [(1+1)*c] ! (a, a) [c]

poly [x] = [(x, x)]

The grade (1+1)*c is for some arbitrary resource algebra k of kind Coe�ect. Internally, the type

signature c : k is interpreted as c :"k (a type variable lifted to a kind). We also promote data types

to the kind level, with data constructors lifted to type constructors.

4.3.3 Top-level definitions & indexed types. As seen in Section 2, Granule supports algebraic a
nd

generalised algebraic data types (providing
indexed types) in the style of Haskell [Peyton Jones

et al. 2006]. At the start of type checking, all type constructors are kind checked and all data

constructors are type checked.
In typing relations here, the D environment holds type schemes for

data constructors, along with a substitution describing coercions from type variables to concrete

types, used to implement indexing. For example, the Cons data constructor of the Vec type in

Section 2.4 has the type Cons : a ! Vec n a ! Vec (n + 1) a which is then represented as:

Cons : (8(� : Type,n : Nat,m : Nat) . � ! Vec n� ! Vecm� , ��) 2 D where �� =m 7! n + 1

We use �� ,� 0� to range over substitutions used for the coercions, implementing the indices of

indexed type data constructors.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Artic
le 1. Publication date: January 2018.

`

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1
�antitative program reasoning with graded modal types
DOMINIC ORCHARD, University of Kent, UKVILEM-BENJAMIN LIEPELT, University of Kent, UKHARLEY EADES III, Augusta University, USA
In programming, data is often considered to be in�nitely copiable, arbitrarily discardable, and universally
unconstrained. However this view is naïve: some data encapsulates resources that are subject to protocols (e.g.,
�le and device handles, channels); some data should not be arbitrarily copied or communicated (e.g., private
data). Linear types provide a partial remedy by delineating data in two camps: “resources” to be used but
never copied or discarded, and unconstrained values. However, this binary distinction is too coarse-grained.
Instead, we propose the general notion of graded modal types, which in combination with linear and indexed
types, provides an expressive type theory for enforcing �ne-grained resource-like properties of data. We
present a type system drawing together these aspects (linear, graded, and indexed) embodied in a fully-�edged
functional language implementation, called Granule. We detail the type system, including its metatheoretic
properties, and explore examples in the concrete language. This work advances the wider goal of expanding
the reach of type systems to capture and verify a broader set of program properties.ACM Reference Format:Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2018. Quantitative program reasoning with
graded modal types. Proc. ACM Program. Lang. 1, CONF, Article 1 (January 2018), 29 pages.1 INTRODUCTION
Most programming languages (and type systems) take the view that data is unrestricted: it can be
replicated, discarded, and used without constraint. However, this view is naïve and can thus lead to
software errors. For example, some data is subject to con�dentiality requirements and therefore
should not be copied arbitrarily. Some data acts a proxy for an external resource (e.g., a socket,
hardware device, or �le) and therefore is sensitive to the order of operations applied to it. Dually,
some programs are sensitive to the size of their inputs, with non-functional aspects (e.g., execution
time) dependent on data. Thus, the reality is that some data acts as a resource, subject to constraints.
In this paper we present Granule, a typed functional language that embeds a notion of data as a

resource into the type system in a way that can be specialised to di�erent notions of resource and
data�ow property. Granule is based on a combination of linear types, indexed types (lightweight
dependent types), and the recent notion of gradedmodal types to enable novel quantitative reasoning.
Linear types, in their strictest sense, treat data like a physical resource which must be used once,

and then never again [Girard 1987; Wadler 1990]. For example, we can type the identity function as
it binds a variable, then uses it, whereas the K combinator �x .��.x is not linearly typed as � is never
used. To overcome this restriction, linear logic provides a modal operator ! which captures and
tracks non-linear, unconstrained values. This provides a binary view: either values are linear (like a
resource) or non-linear (like the traditional view of data). However, in programming, non-linearity
rapidly permeates programs. Bounded Linear Logic (BLL) instead provides a more �ne-grained
view, replacing ! with an family of modal operators indexed by terms capturing the upper bound
on usage [Girard et al. 1992], e.g., !2A captures A values that can be used at most twice. The proof
rules then manipulate these indices, accounting for contraction, weakening, and composition.Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of

Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.2018. 2475-1421/2018/1-ART1 $15.00https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://granule-project.github.io/
Download and play!

36

Some more resources here from recent summer school material
https://granule-project.github.io/splv23

https://granule-project.github.io/splv23

Shout out to many others working on (/ who have
worked) on graded types!

• Andreas Abel

• Jean-Philippe Bernardy

• Shin-ya Katsumata

• Dylan McDermott

• Tarmo Uustalu

• Riccardo Biancinni

• Frank Pfenning

• Stephanie Weirich

• Marco Gaboardi

• Flavien Bruevart

• Francesco Dagnino

• Paola Giannini

• Elena Zucca

• Bob Atkey

• James Wood

• Dan Ghica

• Conor McBride

• AND MORE

