Analysis and lightweight verification of Fortran code

Dominic Orchard 24th April - EGU23 DataWave side event

Institute of Computing for Climate Science

work also with Matthew Danish, Andrew Rice, Mistral Contrastin, Ben Orchard Bloomberg thanks also to

University of kent

Programming Languages and Systems for Science laboratory

Engineering and Physical Sciences Research Council

Validation Did we implement the right equations?

Verification Did we implement the equations right?

better climatologies

CamFort

Verification

Analysis

Refactoring

https://github.com/camfort/camfort/

Demo using MiMA as target

https://github.com/mjucker/MiMA/blob/master/src/atmos_param/moist_conv/moist_conv.f90

camfort alloc-check

camfort fp-check

camfort use-check

Tidy code: No equality (or inequality) on FP

camfort array-check

Computational performance: Column-major order traversal

Memory performance & safety:

All allocated arrays freed, no double free, or use after free

Numerical stability: No equality (or inequality) on FP

photo from Andrew Kennedy's website http://research.microsoft.com/en-us/um/people/akenn/units/

\$ CC	amfort	uni	ts-sı	ugge	est	ener
Sugg	esting	varic	ables	to c	annot	ate
•••						
ener	gy1.f90): 3 \	/ariał	ole c	leclo	arati
spec	ificati	on:				
	energy1	.f90	(2:43	3)	hei	ight
	energy1	.f90	(2:14)	1)	mas	SS
	energy1	.f90	(3:14	+)	pot	centi

real :: mass = 3.00, gravity = 9.91, height = 4.20

Suggest

^{gy1.f90}

with unit specifications in 'energy1.f90'

ons suggested to be given a

.al_energy

1 program energy != unit kg :: mass 2 3 != unit m :: height 4 != unit kg m**2/s**2 :: potential_energy 5 real :: potential_energy 6 7 potential_energy = mass * gravity * height 8 end program energy 9

\$ camfort units-check energy1.f90

energy1.f90: Consistent. 4 variables checked.

```
real :: mass = 3.00, gravity = 9.91, height = 4.20
```

```
Check
```

program energy != unit kg :: mass 2 != unit m :: height 3 real :: mass = 3.00, gravity = 9.91, height = 4.20 4 != unit kg m**2/s**2 :: potential_energy 5 6 real :: potential_energy 7 potential_energy = mass * gravity * height 8 end program energy 9

Synthesising units for energy1.f90

\$ camfort units-synth energy1.f90 energy1.f90

Synthesise

Synthesising units for energy1.f90

\$ camfort units-synth energy1.f90 energy1.f90

Synthesise

```
real :: mass = 3.00, gravity = 9.91, height = 4.20
```

Check Does it do what I think it does?

- Infer
- What does it do?

Synthesise

Capture what it does for documentation & future-proofing

Suggest

Where should I add a specification to get the most information?