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camfort alloc-check Memory performance & safety: 
All allocated arrays freed, no double free, or use after free

camfort fp-check Numerical stability:

No equality (or inequality) on FP

camfort use-check Tidy code:

No equality (or inequality) on FP

camfort array-check Computational performance:

Column-major order traversal



Approaches to verification
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Code Full
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Partial
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Time consuming
Specification completeness? How to chose

which parts?

Lightweight
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Focussed on one
aspect

External spec. 
(Static analysis)

Full verification Partial verification
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1   program energy

2     real :: mass = 3.00, gravity = 9.91, height = 4.20

3     real :: potential_energy

4   

5     potential_energy = mass * gravity * height 

6   end program energy

Suggest
$ camfort units-suggest energy1.f90

Units-of-measure verification

Suggesting variables to annotate with unit specifications in 'energy1.f90'
…
energy1.f90: 3 variable declarations suggested to be given a 
specification:
    energy1.f90 (2:43)    height
    energy1.f90 (2:14)    mass
    energy1.f90 (3:14)    potential_energy



1   program energy

2     != unit kg :: mass

3     != unit m  :: height

4     real :: mass = 3.00, gravity = 9.91, height = 4.20

5     != unit kg m**2/s**2 :: potential_energy

6     real :: potential_energy

7   

8     potential_energy = mass * gravity * height 

9   end program energy

energy1.f90: Consistent. 4 variables checked.

Check
$ camfort units-check energy1.f90

Units-of-measure verification



1   program energy

2     != unit kg :: mass

3     != unit m  :: height

4     real :: mass = 3.00, gravity = 9.91, height = 4.20

5     != unit kg m**2/s**2 :: potential_energy

6     real :: potential_energy

7   

8     potential_energy = mass * gravity * height 

9   end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Units-of-measure verification



1   program energy

2     != unit kg :: mass

3     != unit m  :: height

4     != unit m/s**2  :: gravity

5     real :: mass = 3.00, gravity = 9.91, height = 4.20

6     != unit kg m**2/s**2 :: potential_energy

7     real :: potential_energy

8   

9     potential_energy = mass * gravity * height 

10  end program energy

Synthesising units for energy1.f90

$ camfort units-synth energy1.f90 energy1.f90

Synthesise

Units-of-measure verification



Check
Does it do what I think it does?

Infer
What does it do?

Synthesise
Capture what it does for documentation & future-proofing

Suggest
Where should I add a specification to get the most information?



Correct?

Navier-Stokes code, cf. 2007



Study corpus (v1)

17FORTRAN 77 and Fortran 90

Verifying Spatial Properties of Array Computations 75:5

Table 1. Summary of so�ware packages used for evaluation

Number of �les Physical lines of code Lines of raw code
Package Total Parsed Total Parsed Total Parsed
UM 2,540 2,272 635,525 543,000 1,010,936 868,761
E3ME 167 155 44,935 40,347 73,545 63,185
Hybrid4 29 29 4,831 4,831 8,361 8,361
GEOS-Chem 604 340 449,222 275,389 856,463 420,850
Navier 6 6 505 505 696 696
CP 52 48 2,334 2,121 3,978 3,632
BLAS 151 149 16,046 15,993 40,882 40,679
ARPACK-NG 312 290 50,208 47,453 144,081 139,290
SPECFEM3D 555 477 137,468 103,381 232,356 178,813
MUDPACK 88 88 54,753 54,753 78,652 78,652
Cli�s 30 30 2,424 2,424 3,149 3,149
Total 4,534 3,884 1,398,251 1,090,197 2,453,099 1,806,068

(1) The Uni�ed Model (UM) developed by the UK Met O�ce for weather modelling [Wilson
and Ballard 1999] (version 10.4);

(2) E3ME, a mixed economic/energy impact predication model [Barker et al. 2006];
(3) Hybrid4, a global scale ecosystem model [Friend and White 2000];
(4) GEOS-Chem, troposhperic chemistry model [Bey et al. 2001];
(5) Navier, a small-size Navier-Stokes �uid model [Griebel et al. 1997];
(6) Computational Physics (CP), programs from a popular textbook, Introduction to Computa-

tional Physics [Pang 1999];
(7) BLAS, a common linear-algebra library used in modelling [Blackford et al. 2002];
(8) ARPACK-NG, an open-source library for solving eigenvalue problems [Sorenson et al. 2017];
(9) SPECFEM3D, global seismic wave models [Komatitsch et al. 2016];
(10) MUDPACK, a general multi-grid solver for elliptical partial di�erentials [Adams 1991];
(11) Cli�s, a tsunami model [Tolkova 2014].

These cover approximately 1.4 million physical lines of Fortran code (2.4 million including com-
ments and white space). The UM and GEOS-Chem packages are the largest at ⇡635kloc and
⇡450kloc respectively. Table 1 provides further detail on these packages and their sizes. We used
Wheeler’s SLOCCount to get a count of the physical source lines (excluding comments and blank
lines) [Wheeler 2001]. A third of the packages come from active research teams who are our project
partners (i.e., they were not selected carefully to �t our hypotheses).

Analysis tool. We built a code analysis tool based on CamFort, an open-source Fortran anal-
yser [Contrastin et al. 2017]. Fortran source �les are parsed to an AST and standard control-�ow
and data-�ow analyses are computed, including some of key importance for us: induction variable
identi�cation and reaching de�nitions. The resulting AST is traversed top-down and assignment
statements inside loops are analysed and classi�ed. CamFort implements standards compliant
parsers, and so we were not able to parse all of the corpus as some packages contain non-standard
code. Of the 1.4 million lines, just under 1.1 million physical lines of code were parsed.

Our analysis classi�es assignment statements as array computations if they are contained within
a loop and their right-hand side has relative array subscripts, i.e. their indices use induction variables.
Assignments are classi�ed based on all the expressions that may2 �ow to their right-hand side. For

2We use a “may” analysis, in the sense that it takes the union of information from merging data�ow paths.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 75. Publication date: October 2017.

climate
economics
bio/climate
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geodynamics
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11 packages
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physical loc



• Array computations are common in science       (133k / 1.1m)

Analysis of patterns in corpus

• Mostly regular access patterns   (72.12% of all array comps.)

18
Design of specification language for array access shape

Numerical analysis
literature

• Many are stencils                       (55.86% of all array comps.)

(6.28% are “reductions”)

Paper has more fine-grained analysis/data
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awareness, but also a lack of tools targeted at the needs of scientists. We aim to change that. This
paper is part of a line of research providing lightweight, easy-to-use veri�cation tools targeted at
common programming patterns in science, motivated by empirical analysis of real code.

We focus on one common concept: arrays, the core data structure in numerical modelling code,
typically used to represent discrete approximations of physical space/time or to store data sets. A
common programming pattern, sometimes referred to as the structured grid pattern [Asanovic̀ et al.
2006], traverses the index space of one or more arrays via a loop, computing elements of another
array (also called a stencil computation) or reducing the elements to a single value. For example, the
following Fortran code computes the one-dimensional discrete Laplace operator for an array:
1 do i = 1, (n-1)

2 b(i) = a(i-1) - 2*a(i) + a(i+1)

3 end do

This is an example stencil computation, where elements of an array at each index i are computed
from a neighbourhood of values around i in some input array(s). Stencils are common in scienti�c,
graphical, and numerical code, e.g., convolutions in image processing, approximations to di�erential
equations in modelling, and cellular automata.

Such array computations are prone to programming errors in their indexing terms. For example,
a logical o�-by-one-error might manifest itself as writing a(i) instead of a(i-1) (we revisit examples
we found of this in Section 7.3). Errors also arise by simple lexical mistakes when large amounts
of �ne-grained indexing are involved in a single expression. For example, the following snippet
from a Navier-Stokes �uid model [Griebel et al. 1997] has two arrays (u and v) which are read with
di�erent data access patterns, across two dimensions, with dense index-manipulation:

20 du2dx = ((u(i,j)+u(i+1,j))*(u(i,j)+u(i+1,j))+gamma*abs(u(i,j)+u(i+1,j))*(u(i,j)-u(i+1,j))- &

21 (u(i-1,j)+u(i,j))*(u(i-1,j)+u(i,j))-gamma*abs(u(i-1,j)+u(i,j))*(u(i-1,j)-u(i,j))) &

22 / (4.0*delx)

23 duvdy = ((v(i,j)+v(i+1,j))*(u(i,j)+u(i,j+1))+gamma*abs(v(i,j)+v(i+1,j))*(u(i,j)-u(i,j+1))- &

24 (v(i,j-1)+v(i+1,j-1))*(u(i,j-1)+u(i,j))-gamma*abs(v(i,j-1)+v(i+1,j-1))*(u(i,j-1)- u(i,j))) &

25 / (4.0*dely)

26

27 laplu = (u(i+1,j)-2.0*u(i,j)+u(i-1,j))/delx/delx+(u(i,j+1)-2.0*u(i,j)+u(i,j-1))/dely/dely

28 f(i,j) = u(i,j)+del_t*(laplu/Re-du2dx-duvdy)

This miasma of indexing expressions is hard to read and prone to simple textual input mistakes, e.g.
swapping - and +, missing an indexing term, transforming the wrong variable, e.g. u(i+1,j) instead
of u(i,j+1), or reading from the wrong array, e.g. u(i,j) instead of v(i,j).

In practice, the typical development procedure for complex stencil computations involves some
ad hoc testing to ensure that no mistakes have been made e.g., by visual inspections on data,
or comparison against manufactured or analytical solutions [Farrell et al. 2010]. Such testing is
often discarded once the code is shown correct. This is not the only information that is discarded.
The shape of the indexing pattern is usually the result of choices made in the numerical-analysis
procedure used to discretise some continuous equations. Rarely are these decisions captured in
the source code, yet the derived shape is usually uniform with a clear and concise description e.g.,
centered space, of depth 1 referring to indexing terms a(i), a(i-1) and a(i+1) [Recktenwald 2004].

To support correct array programming, we propose a simple, abstract speci�cation language for
the data access pattern of array-loop computations. This provides a way to prevent indexing errors
and also to capture some of the original high-level intent of the algorithm. The language design is
informed by an initial empirical study of array computations in a corpus of a real-world scienti�c
code bases, totalling 1.4 million physical lines of code1 (Section 2).
1Though due to strictness of the parser, we analysed 1.1 million physical lines of code from this corpus. We use Wheeler’s
SLOCCount to get a count of physical source lines, excluding comments and blank lines [Wheeler 2001].
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paper is part of a line of research providing lightweight, easy-to-use veri�cation tools targeted at
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typically used to represent discrete approximations of physical space/time or to store data sets. A
common programming pattern, sometimes referred to as the structured grid pattern [Asanovic̀ et al.
2006], traverses the index space of one or more arrays via a loop, computing elements of another
array (also called a stencil computation) or reducing the elements to a single value. For example, the
following Fortran code computes the one-dimensional discrete Laplace operator for an array:
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2 b(i) = a(i-1) - 2*a(i) + a(i+1)

3 end do

This is an example stencil computation, where elements of an array at each index i are computed
from a neighbourhood of values around i in some input array(s). Stencils are common in scienti�c,
graphical, and numerical code, e.g., convolutions in image processing, approximations to di�erential
equations in modelling, and cellular automata.

Such array computations are prone to programming errors in their indexing terms. For example,
a logical o�-by-one-error might manifest itself as writing a(i) instead of a(i-1) (we revisit examples
we found of this in Section 7.3). Errors also arise by simple lexical mistakes when large amounts
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This miasma of indexing expressions is hard to read and prone to simple textual input mistakes, e.g.
swapping - and +, missing an indexing term, transforming the wrong variable, e.g. u(i+1,j) instead
of u(i,j+1), or reading from the wrong array, e.g. u(i,j) instead of v(i,j).

In practice, the typical development procedure for complex stencil computations involves some
ad hoc testing to ensure that no mistakes have been made e.g., by visual inspections on data,
or comparison against manufactured or analytical solutions [Farrell et al. 2010]. Such testing is
often discarded once the code is shown correct. This is not the only information that is discarded.
The shape of the indexing pattern is usually the result of choices made in the numerical-analysis
procedure used to discretise some continuous equations. Rarely are these decisions captured in
the source code, yet the derived shape is usually uniform with a clear and concise description e.g.,
centered space, of depth 1 referring to indexing terms a(i), a(i-1) and a(i+1) [Recktenwald 2004].

To support correct array programming, we propose a simple, abstract speci�cation language for
the data access pattern of array-loop computations. This provides a way to prevent indexing errors
and also to capture some of the original high-level intent of the algorithm. The language design is
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Spatial specification language
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centered(dim=1,depth=1)
i

a(i-1), a(i), a(i+1)

forward(dim=1,depth=1)

i

a(i), a(i+1)

backward(dim=1,depth=1)

i

a(i-1), a(i)

pointed(dim=1)

i

a(i)



Spatial specification language
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forward(dim=1,depth=2)

i

backward(dim=1,depth=2)

i

centered(dim=1,depth=2)
i

a(i-1), a(i-2), a(i), a(i+1), a(i+2)

a(i), a(i+1), a(i+2)

a(i-2), a(i-1), a(i)

pointed(dim=1)

i

a(i)



Combining specifications with *
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e.g. centered(dim=1,depth=1)

i

j

* centered(dim=2,depth=1)

  a(i-1, j-1) + a(i-1, j) + a(i-1, j+1)
+ a(i  , j-1) + a(i  , j) + a(i  , j+1)
+ a(i+1, j-1) + a(i+1, j) + a(i+1, j+1)

Corresponds to
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e.g. centered(dim=1,depth=1)*pointed(dim=2)

i

j

+ centered(dim=2,depth=1)*pointed(dim=1)

              a(i-1, j)
+ a(i, j-1) + a(i  , j) + a(i, j+1)
+             a(i+1, j)

Corresponds to
“Five point stencil”

Combining specifications with +
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