
Proceedings of the MycroftFest Symposium

Celebrating the career of
Professor Alan Mycroft

December 1st 2023

Editors: Dominic Orchard, Tomas Petricek, Jeremy Singer

Introduction

If “academia is a pie eating contest where the prize is more pie”, then what better way to celebrate the
distinguished career of a retiring professor than by giving talks and writing papers! Thus, in Autumn
2023, with Professor Alan Mycroft formally retiring from the University of Cambridge, we thought it
fitting to celebrate his career with a one-day symposium and a formal Festschrift publication to appear
in the new year.

This informal proceedings gathers the abstracts of contributed talks which capture the wide-ranging
nature of Alan’s career, interests, and expertise, as well as the scope of his influence through a large num-
ber of collaborators, students, and their descendants. Included are a number of draft papers associated
with some of the talks.

Alan is well-known for pioneering contributions to programming language theory and applications,
covering both design and implementation. His work ranges from compilation and optimization techniques,
through semantics, static analysis, and type systems, to parallel, concurrent and dataflow programming.

Following a BA in Mathematics at the University of Cambridge (1977), Alan completed the Diploma
in Computer Science (1978). He then moved to Edinburgh for a PhD on the topic of “Abstract Interpre-
tation and Optimising Transformations for Applicative Programs”1 which was completed in 1981 under
the supervision of Rod Burstall and Robin Milner. After an EPSRC post-doctoral fellowship at Edin-
burgh from 1981-83 and a stint as a Forskarassistent (‘Research Assistant’) at Chalmers in Gothenburg,
Sweden, Alan returned to the Computer Laboratory at Cambridge in 1984. He has remained here ever
since, metamorphosing from Lecturer to Senior Lecturer, then Reader in Programming Language Imple-
mentation,2 before becoming Professor of Computing in 2004.3 Since 1987 he has also been a fellow at
Robinson College. Along the way he co-created the Norcroft C compiler, co-authored the book Java 8 in
Action: Lambdas, streams, and functional-style programming, and co-founded the Raspberry Pi Founda-
tion, helping to “put the fun back into learning computing” and encouraging programming back into the
homes of families worldwide.

To those who have worked with Alan, or have been taught by him, he is renowned for his unstop-
pable enthusiasm about any challenging problem related to programming and computers, making him an
inspiring teacher, mentor, and collaborator.

Thank you Alan for your enthusiasm, encouragement, and much scribbled feedback in red pen.

Dominic Orchard
Tomas Petricek
Jeremy Singer

1https://era.ed.ac.uk/handle/1842/6602
2https://www.admin.cam.ac.uk/reporter/2001-02/weekly/5877/5.html
3https://www.admin.cam.ac.uk/reporter/2004-05/weekly/5992/12.html

3

https://era.ed.ac.uk/handle/1842/6602
https://www.admin.cam.ac.uk/reporter/2001-02/weekly/5877/5.html
https://www.admin.cam.ac.uk/reporter/2004-05/weekly/5992/12.html

Contents

Introduction 1

Talk abstracts 5
On the NorCroft Compiler . 7
Static Analysis for Hardware Design . 7
When Obfuscations Preserve Constant-Time . 7
No Need to Imply Anything . 8
The Contributions of Alan Mycroft to Abstract Interpretation 8
Comonadic notions of computation revisited . 8
How to construct graded monads . 8
A Tale of Two Graded Calculi: The Marriage of Coeffects and Graded Comonads 9
Linearity, Uniqueness, Ownership: An Entente Cordiale . 9
Sustainable software development - new challenges for programming, language design and pro-

gram analysis. 9
A Symbolic Computing Perspective on Software Systems . 10
Programming systems deserve a theory too! . 10
Air quality big data analytics using low-cost sensors . 11
Parallel Multiprecision Arithmetic the Easy Way . 11
axs: a workflow automation language for omni-benchmarking and optimization 12
Triemaps that match . 12

Draft papers 12
No Need to Imply Anything . 13
The Contributions of Alan Mycroft to Abstract Interpretation 23
Sustainable software development: new challenges for programming, languages design and analysis 38
Air quality big data analytics using low-cost sensors . 51
Triemaps that match Technical Report . 56

5

Talk abstracts

On the NorCroft Compiler

Jeremy Singer, University of Glasgow

Back in the mid 1980s, a ‘couple of academics wearing startup-company hats’ were developing
a retargetable C compiler. The most prolific target for this compiler was the Arm processor,
newly designed by Acorn. In this talk, we will review 1980s compiler technology and see how
the NorCroft compiler significantly advanced the state of the art, particularly highlighting
the friendly error messages and graph-colouring register allocation. We will conclude by
considering the legacy of the NorCroft compiler.

Static Analysis for Hardware Design

Mads Rosendahl, Roskilde University
Maja Kirkeby, Roskilde University

Implementing algorithms in hardware can be a substantial engineering challenge. Hardware
accelerators for some algorithms may be a way to achieve better time and energy efficiency
of the computational problems. We explore some possible applications of static analysis in
the design phase of construction hardware design for algorithms targeting field-programmable
gate arrays (FPGA).

Drawing inspiration from Alan Mycroft’s 2007 invited talk on static analysis and subsequent
articles discussing the connection between hardware evolution, language design, and static
analysis, we explore the usage of static analysis as a tool to facilitate the realization of hard-
ware accelerators for algorithms. We examine methodologies for analyzing communication
and data flows within the hardware design, thereby enhancing our understanding of these
aspects in the pursuit of efficient FPGA-based algorithm implementations.

When Obfuscations Preserve Constant-Time

Matteo Busi, Ca’ Foscari University of Venice
Pierpaolo Degano, Dipartimento di Informatica - Universita’ di Pisa
Letterio Galletta, IMT School for Advanced Studies Lucca

Obfuscating compilers are designed to protect a program by obscuring its meaning and im-
peding the reconstruction of its original source code. Usually, the main concern with such
compilers is their robustness against reverse engineering. On the contrary, little attention is
paid to ensure that obfuscation introduces no attacks in the transformed program that where
not present in the original one — in the style of secure compilation.

We are interested in checking whether a given obfuscation technique preserves the constant-
time property. Cryptographic libraries often resort to this property to guarantee that no
attackers can learn any secret values by monitoring and analysing program execution time.

Here, we propose a sufficient condition to check if a given obfuscation preserves constant-time.
Checking this condition amounts to a simple and efficient static analysis that can be easily
implemented.

7

We consider several obfuscating transformations implemented in popular obfuscating compil-
ers (e.g. the Tigress C compiler and O-MVLL). By relying on our condition we prove that
some of them preserve constant-time, while others do not. When a transformation breaks
constant-time, we propose a translation validation that applies our condition case by case.

No Need to Imply Anything

Paulo Torrens, University of Kent

The need to reason about source programs has led to the development of intermediate rep-
resentation languages whose semantics are well-suited for analyises and optimization tech-
niques employed within compilers. The monadic nature of such languages traces back to the
double-negation translation found in logic, where the use of continuations not only expose
details about a program’s control flow, but it also allows for a very natural imperative inter-
pretation of functional programs by dropping the basic notion of a function, seeing lambda
terms through the lenses of labels and jumps. In this presentation we aim to cover some
ground into this imperative interpretation of functional calculi, such as the case of Thielecke’s
CPS-calculus, arising both from practical interest within compiler development and from a
theoretical viewpoint, as these languages correspond to systems of logic that reject implication
as a primitive and take negation as a more basic notion instead.

The Contributions of Alan Mycroft to Abstract Interpretation

Patrick Cousot, Courant Institute of Mathematical Sciences, New York University

We briefly summarize the contributions of Alan Mycroft to abstract interpretation which he
pioneered by inventing strictness analysis of higher-order functional programming languages
in the early 80’s. His work originated a lot of research on strictness analysis and more generally
the static analysis of functional programs, a crucial contribution to the theory, diffusion, and
application of abstract interpretation.

Comonadic notions of computation revisited

Tarmo Uustalu, Reykjavik University

Comonadic and graded comonadic notions of computation became the subject of the work of
Alan and his students on static analysis with type-and-coeffect systems.

I want to revisit the issue that it only makes good sense to pair contextual values (like values
with their pasts in dataflow computation) if they are of the same shape. How to control
shapes? We considered one solution in our CMCS 2008 paper. What can we say in 2023?

How to construct graded monads

Dylan McDermott, Reykjavik University

Models of computational effects based on graded monads are a useful tool for reasoning about
programs. Each grade can be viewed as an abstraction of a set of computations that we can
reason about, a perspective that is not available for models based on (ungraded) monads.
Given this perspective, it is natural to wonder whether we can construct graded monads from
monads by choosing sets of computations for grades to represent. We show that this is usually
the case. If the chosen sets of computations satisfy some closure conditions, we can extract
a graded monad almost for free. It turns out that many of the graded monads appearing
in the literature can be seen as instances of this construction. We obtain a technique for
constructing graded models from ungraded models, in such a way that the graded model can
actually be used for program reasoning.

A Tale of Two Graded Calculi: The Marriage of Coeffects and Graded Comon-
ads

Vilem Liepelt, University of Kent
Daniel Marshall, University of Kent
Dominic Orchard, University of Kent and University of Cambridge

The notion of graded types is an overarching paradigm for type systems that embed additional
information for reasoning about the underlying structure of programs. Examples include a
wide range of effect systems and coeffect systems, which capture respectively how a program
changes its context or depends upon it. In the literature, two styles of coeffect system have
emerged in the last decade: those in which coeffects annotations are pervasive (requiring
annotations on function types), and those in which coeffects are added by way of a graded
modal type operator atop some existing base language. In this work, we show how the two
styles of coeffect systems relate and in what circumstances they have equivalent power. This
parallels the two styles of effect reasoning in the literature: effect systems or (graded) monads,
which have also been studied and found to be equivalent. Our work thus serves to unify the
literature on coeffect systems to enable transfer of results and ideas in the future.

Linearity, Uniqueness, Ownership: An Entente Cordiale

Daniel Marshall, University of Kent

Ten years ago, Mycroft and Voigt surveyed notions of aliasing and ownership in programming
languages, and argued for the view that many existing forms of aliasing control represent
limited facets of the higher-level structured view corresponding to ownership. More recently,
concepts of ownership and borrowing have become relevant to practical programmers as well
as researchers through the medium of Rust, which aims to enforce safe memory management
while bringing some of the guarantees offered by pure functional programming into the realm of
performant systems code. Models like RustBelt and Oxide aim to formalise Rust’s ownership
system in detail, but there is less of a focus on integrating the basic ideas directly into
more traditional functional type systems. We explain Granule’s approach towards this, which
builds on existing mechanisms for linearity and uniqueness through a form of grading akin
to Boyland’s fractional permissions, and discuss how this mechanism fits in to the framework
presented by Mycroft and Voigt. We then look to the future, and briefly consider how a
graded setting such as Granule’s type system might be well suited for a more unified theory
such as the one they hoped to uncover.

Sustainable software development - new challenges for programming, language
design and program analysis.

Bent Thomsen, Aalborg University
Lone Leth Thomsen, Aalborg University
Thomas Bøgholm, Aalborg University

Energy consumption and the associated CO2 footprint of Information and Communication
Technology (ICT) has become a major concern. Some estimates suggest that 4-6% of global
energy consumption in 2020 was spent on ICT and, although the ICT industry is very good
at using green energy, CO2 emissions from ICT are at par with CO2 emissions from Aviation.
Pessimistic forecasts suggest that energy consumption from ICT may rise to 20% in 2030.

Clearly software as such does not emit CO2, but software is executed on hardware, and
hardware consumes energy when executing software. In recent years there has been a huge
effort in understanding the relationship between software and energy consumption of the
underlying hardware. There is now evidence that the structure of the software, the program
constructs used in the software and even the programming languages and compilers used
for developing the software influence the energy consumption when the software is executed.
There is a huge global effort on raising awareness of sustainable software development and
there is a growing body of knowledge of many aspects.

However, the literature on how programming language design and analysis can impact energy
consumption of the underlying hardware is sparse.

In a seminal presentation at SAS’2007 Alan gave an overview of the changes going on in
hardware and outlined his view on the implications of this on programming language design
and analysis research. In this paper we will try to follow in Alan’s footsteps and outline our
view on the implications of energy consumption on programming language design and analysis
research.

A Symbolic Computing Perspective on Software Systems

Arthur Norman, Trinity College Cambridge
Stephen Watt, University of Waterloo

Symbolic mathematical computing systems have served as a canary in the coal mine of soft-
ware systems for more than sixty years. They have introduced or have been early adopters of
programming language ideas such ideas as dynamic memory management, arbitrary precision
arithmetic and dependent types. These systems have the feature of being highly complex
while at the same time operating in a domain where results are well-defined and clearly veri-
fiable. These software systems span multiple layers of abstraction with concerns ranging from
instruction scheduling and cache pressure up to algorithmic complexity of constructions in
algebraic geometry. All of the major symbolic mathematical computing systems include low-
level code for arithmetic, memory management and other primitives, a compiler or interpreter
for a bespoke programming language, a library of high level mathematical algorithms, and
some form of user interface. Each of these parts invokes multiple deep issues.

We present some lessons learned from this environment and free flowing opinions on topics
including:

• Portability of software across architectures and decades,

• Infrastructure to embrace and infrastructure to avoid,

• Choosing base abstractions upon which to build,

• How to get the most out of a small code base,

• How developments in compilers both to optimise and to validate code have always been
and remain of critical importance, with plenty of remaining challenges,

• The way in which individuals like Alan Mycroft who has been able to span from hand-
crafting Z80 machine code up to the most abstruse high level code analysis techniques
are needed, and

• Why it is important to teach full-stack thinking to the next generation.

Programming systems deserve a theory too!

Tomas Petricek, Charles University
Joel Jakubovic, University of Kent

Making programming easier and more accessible to non-experts has been a dream since the
dawn of computing. In 1957, a catchy advertising brochure for FLOW-MATIC promised that
the system will “virtually eliminate your coding load”. We have certainly learned how to build
more complex and reliable systems since then, but programming largely remains accessible
only to experts and even a simple change requires navigating through hundreds of thousands
of lines of code.

What would it take to make programming simpler and more accessible? In this somewhat
philosophical talk, we will reflect on a number of issues that we encountered along the way
when thinking about the problem. What would the notation for a simple programming system
have to look like? Have visions around Free Software or Smalltalk taken us closer to this aim?
And can we overcome Fred Brooks’ tenet that “there is no silver bullet”?

The starting point for our investigation is the belief that we need to think less about program-
ming languages, in which textual programs are written, and start to think about programming
systems, interactive and stateful environments with which we interact when creating and using
programs.

Air quality big data analytics using low-cost sensors

Eleftheria Katsiri, Democritus University of Thrace, Department of Electrical and Computer Engineering

Air pollution is the fourth most important risk of death factor in the world with a proven
burden of disease that includes billions of deaths and thousands of DALYS. Furthermore, 4000
industries and 3000 diagnostic labs, in Greece only, are required by law to monitor air quality.
Recently, both the covid-19 pandemic and climate change are changing current legislation
worldwide, strengthening the need to monitor air quality.
On the other hand, the emergence of the low-cost sensor technology has changed the pollution
monitoring paradigm, by enabling the monitoring of pollutants close to the source, with high
temporal and spatial granularity. This make it possible to answer new questions about the
underlying causes of poor air quality, ensure more accurate modelling and prediction at local
scales, improve the ability to identify the links between air quality and human health or
environmental degradation, identify potential air pollution “hot spots”, enhance the ability
to quantify the impacts of pollutant mitigation techniques and promote savings through on-
demand ventilation. However, the exploitation of low-cost sensors requires in-depth knowledge
of sensing principles, low-noise electronics, calibration in the lab and in he field, real-time edge
processing and device-cloud communication, analytics and AI. Our team has been engaged in
the development of reliable air quality sensing devices using low-cost sensors, custom sensor
boards, embedded software and cloud services. The SibaIoT PM device used in this work
measures ambient particulate matter concentrations in ug/m3 of three classes of particles,
namely PM1.0, PM2.5, PM10, humidity and temperature. The device has very good accuracy,
response time and sensitivity in indoor pollution levels.
With respect to the methodology, we have conducted a pilot application in a state-of-the
art industrial space that is sensitive to infection caused by particulate matter such as dust.
Fifteen PM devices were installed in three different production areas with varying air quality
sensitivity. Indicative visual analytics are presented in the paper such as descriptive analytics,
histograms, density, delay and line plots, as well as outcomes from the application of analytic
functions such as Pearson correlation, k-means clustering, classification and aggregated expo-
sure to pollution on the sensor data. More specifically, both Production-Area analytics, i.e.,
analysis of multiple time-series generated by multiple devices deployed at a specific produc-
tion area and Intra-Area analytics, i.e., analysis of multiple time-series generated by multiple
devices deployed at logically connected production areas, are discussed. For example, we
have calculated annual max, min, average values per day-of-the-week, shift, day of the month,
hour-of-the-day, poor, good and fair quality clusters.
Preliminary results show that the above analytics are promising in providing useful insights
on the both the level of pollution and the intensity of industrial activity in the dairy. For
example we have found that air quality is aggravated indoors during weekdays, that annual
average particulate matter concentration follows humidity and temperature with a fixed lag.

Parallel Multiprecision Arithmetic the Easy Way

Cosmin Oancea, University of Copenhagen
Stephen Watt, University of Waterloo

In today’s world, computation on multiple precision integers is a cornerstone of privacy and
other applications. At the same time, every device, from telephones to desktop computers,
has a GPU, often underutilized. Programming these using vendor libraries or low-level APIs
is tedious and error prone and not at all suitable for writing high-level mathematical code.
We look at applying a functional data parallel language aimed at GPU computation to build-
ing big integer functions. These functions can be expressed in terms of natural arithmetic

operations that compose just as those using primitive types. We examine how functional
primitives can be used to give elegant and efficient GPU arithmetic for multiple precision
integers of the sizes needed for practical applications.

Computational thinking bridging the conceptual gap between idiosyncratic architectures and
high-level abstractions is one of the hallmarks of Alan Mycroft’s work from which we have
taken inspiration.

axs: a workflow automation language for omni-benchmarking and optimiza-
tion

Anton Lokhmotov, KRAI
Leo Gordon, KRAI
Alastair Donaldson, Imperial College London

We present axs (pronounced “access”), a workflow automation language developed at KRAI
with the primary purpose of benchmarking and optimization of Computer Systems for Ma-
chine Learning applications. We discuss the most salient features of the language in the con-
text of preparing highly competitive and fully compliant submissions to MLPerf, an industry
competition often referred to as "The Olympics of ML Benchmarking". axs has enabled hun-
dreds of such submissions from KRAI’s partners including Qualcomm, HPE, Dell and Lenovo,
sometimes helping them to win “Gold” and “Silver” medals against the entrenched competition
represented by NVIDIA.

Triemaps that match

Simon Peyton Jones, Epic Games
Sebastian Graf, Karlsruhe Institute of Technology

The trie data structure is a good choice for finite maps whose keys are data structures (trees)
rather than atomic values. But what if we want the keys to be *patterns*, each of which
matches many lookup keys? Efficient matching of this kind is well studied in the theorem
prover community, but much less so in the context of statically typed functional programming.
Doing so yields an interesting new viewpoint — and a practically useful design pattern, with
good runtime performance.

This paper grew out of work on compilers and functional programming, both of which are
among Alan’s long term interests

Draft papers

13

No Need to Imply Anything

Paulo Torrens

University of Kent, Canterbury, UK
paulotorrens@gnu.org

Abstract. The need to reason about source programs has led to the
development of intermediate representation languages whose semantics
are well-suited for analyses and optimization techniques employed within
compilers. The monadic nature of such languages traces back to the
double-negation translation found in logic, where the use of continuations
not only exposes details about a program’s control flow, but it also allows
for a very natural imperative interpretation of functional programs by
dropping the basic notion of a function, seeing lambda terms through
the lenses of labels and jumps. In this paper, we review ongoing work
on the study of Thielecke’s CPS-calculus, an equational theory based on
the intermediate representation of Appel’s compiler, which arose from
practical interest but enjoys several important theoretical properties, and
how – once again – logicians and computer scientists seemed to have
arrived at the same place.

Keywords: Compilers · Intermediate Representations · Type Theory.

1 Introduction

While devising the RABBIT compiler for Scheme, Steele [21] demonstrated it was
possible to efficiently compile a functional language. His compiler relied on the
now well-known continuation-passing style (CPS) translation (see, e.g., [18]), a
program transformation technique that internalizes evaluation contexts into the
program, making control flow explicit. This work also contains a very important
remark: the λ-calculus in CPS form admits a natural imperative interpretation,
where function application can be seem as jumps. In fact, this structure also
aids in the process of lowering a program into machine code, as the mainstream
computer architectures work in similar fashion, where the instruction pointer
copied to the stack playing the part of the returning continuation.

Of course, a language in CPS form is not the only option for an intermediate
representation (IR) language inside a compiler. While the literature seems to
have a hard time agreeing on the best approach [12,16,5], it’s well-known that
the usual alternatives such as SSA [6] and ANF [20,7] are, actually, isomorphic
to a subset of CPS terms where control effects are not present [11,2,4] and to
Moggi’s computational λ-calculus [20]; in this regard, all of these languages allow
for reasoning about arbitrary side-effects, either through an arbitrary monad (in
SSA and ANF) or through the continuation monad (in CPS).

2 Paulo Torrens

Commands b ::= x⟨x⃗⟩︸︷︷︸
jump

| b { x⟨x⃗⟩ = b }︸ ︷︷ ︸
bind

Contexts C ::= [−] | C { x⟨x⃗⟩ = c } | c { x⟨x⃗⟩ = C }

c◦ = e

k⟨x⃗⟩◦ = k x⃗

b { k⟨x⃗⟩ = c }◦ = (λk.b◦) (λx⃗.c◦)

c• = p

k⟨x⃗⟩• = k⟨x⃗⟩
b { k⟨x⃗⟩ = c }• = (νk)(b• | !k(x⃗).c•)

(w.l.o.g., k /∈ FV(c))

Fig. 1. The CPS-calculus – syntax and translations

Just as the λ-calculus plays a key role in the study of functional languages,
and so does the π-calculus in the study of concurrent languages, we argue that
a strong theoretical foundation for IRs has the potential of being useful in
the formal study of compilers. In order to do so, we study the metatheory of
Thielecke’s CPS-calculus [24,23], a simple theory of continuations. While we
refrain from contributing to the discussion on what exactly constitutes a good
IR, we argue that as the other common approaches are isomorphic to a subset of
CPS terms, using a CPS language as a foundation gives an advantage in the case
that control effects are indeed desired (instead of having to resort to complex
analyses over some control operator like C or call/cc in direct style). Also, as
argued by [5], the introduction of explicit continuations cannot be avoided in
a compilation pipeline due to how machine code usually works, thus the choice
actually lies on when to introduce them.

We proceed to review the CPS-calculus in Section 2, including new results.
As the resulting system is logically consistent, we discuss in Section 3 the idea
of Curry-Howard for IRs, showing how the CPS-calculus may be simultaneously
decomposed into a fragment of the π-calculus which coincides with a type system
enforcing sequentiality as used by Honda et al. [13], relating to a fragment of
linear logic [10], as well as into a fragment of the λ-calculus where function types
are not primitive but rather derived by the use of negation and conjunction,
something that has been proposed in the context of IRs by Rudiak-Gould et al.
[19] and by Führmann et al. [8], and which relates to an implication-free subset
of minimal logic. Finally, we give our concluding remarks in Section 4.

2 The CPS-calculus

The CPS-calculus, introduced in Thielecke’s PhD thesis [23], is a simple theory
that was based on the IR of Appel’s influential book [1], motivated by the study
of the categorical structure necessary for continuation-passing. Its syntax, along
with semantics-preserving translations into the λ-calculus and the π-calculus,
whose syntaxes are standard and omitted, is given in Figure 1.

No Need to Imply Anything 3

c = c

(JMP) k⟨x⃗⟩ { k⟨⃗y⟩ = c } = c[x⃗/y⃗] (given k /∈ x⃗)
(DISTR) b { k⟨x⃗⟩ = c } { j⟨⃗y⟩ = d } = b { j⟨⃗y⟩ = d } { k⟨x⃗⟩ = c { j⟨⃗y⟩ = d } }

(k ̸= j, j /∈ x⃗, and k, x⃗ /∈ FV(d))
(ETA) b { k⟨x⃗⟩ = j⟨x⃗⟩ } = b[j/k] (given j /∈ x⃗)

(GC) k⟨x⃗⟩ { j⟨⃗y⟩ = c } = k⟨x⃗⟩ (given j /∈ FV(k⟨x⃗⟩))

c→ c

C[k⟨x⃗⟩] { k⟨⃗y⟩ = c } → C[c[x⃗/y⃗]] { k⟨⃗y⟩ = c } (k /∈ dom(C))

b { k⟨⃗y⟩ = c } → b (given k /∈ FV(b))

Fig. 2. Equational theory and reduction semantics

A CPS term, also called a command, can only be defined as either a jump or
as a bind. In the former, k⟨x⃗⟩ represents a call to k with x⃗ as arguments, and in
the latter, b { k⟨⃗y⟩ = c } composes two terms by defining k in b as a continuation
c, which will take y⃗ as parameters. In the syntax presented by Appel in [3], these
terms would be written respectively as k(x⃗) and let k(⃗y) = c in b, which might
be more familiar to some readers.

As a calculus, the CPS-calculus is defined through an equational theory that
allows to relate terms that are expected to “behave the same”. In addition,
we introduce a reduction semantics based on the compiler optimization rules
described by Kennedy in [12], with both semantics presented in Figure 2. We
note that the idea of using optimization rules (namely function inlining and dead
code elimination) as an actual semantics had already been suggested by Appel
in [3], although, to the best of our knowledge, this hadn’t yet been explored. The
equational theory and the reduction semantics agree in the following sense:

Theorem 1. The reduction relation → is sound with regards to the equational
theory (thus b → c implies b = c), and the equational theory is sound with regard
to the observational congruence induced by it (thus b = c implies b ≈ c).

Though details should appear elsewhere1, the above reduction relation is
sound and complete with regard to the machine semantics presented for a variant
of Appel’s IR by Kennedy in [12]. The relation also enjoys the usual desirable
properties such as confluence and factorization of head reduction (i.e., function
inlining for the leftmost jump in a term), and allows us to prove correctness of
both CPS translations presented by Plotkin in [17].

Theorem 2. Let J−KN and J−KV denote Plotkin’s call-by-name and call-by-value
CPS translations. Then Je1KN ≈ Je2KN implies e1 ≈ e2 in the λ-calculus, and
Je1KV ≈ Je2KV implies e1 ≈ e2 in the λv-calculus.
1 An ongoing formalization is hosted on GitHub: https://github.com/takanuva/cps.

4 Paulo Torrens

Types τ ::= ¬τ⃗ | X Environments Γ ::= · | Γ, x: τ

Γ ⊢ c

Γ(k) = ¬τ⃗ Γ(x⃗) = τ⃗
(J)

Γ ⊢ k⟨x⃗⟩
Γ, k: ¬τ⃗ ⊢ b Γ, x⃗: τ⃗ ⊢ c (B)

Γ ⊢ b { k⟨x⃗⟩ = c }

Fig. 3. Simple type system

The above theorem, together with the relationship to the abstract machine
semantics for an actual IR implementation, allows us to demonstrate the rather
unsurprising result that Appel and Kennedy’s IRs are suitable targets for the
compilation of the λ-calculus, by using the CPS-calculus metatheory. In fact, we
can prove that the CPS-calculus relates to Appel’s IR in the exact same sense
that the λ-calculus relates to ISWIM, as shown by Plotkin [17].

2.1 Simple Types

As the CPS-calculus was originally presented in a categorical setting, types were
considered pervasively. The rules for the simply-typed CPS-calculus, as given by
Thielecke [23], are presented in Figure 3. By adapting Tait and Girard’s proof
method [9], we demonstrate that the reduction rules are strongly normalizing
for well-typed terms. As a consequence, which had already been noticed by Levy
in [15], the simply-typed CPS-calculus is consistent as a logic system, providing
yet another constructive interpretation for classical logic, although one with a
computational content that has been used in production compilers for the past
30 years, such as in Appel’s and Kennedy’s compilers.

Theorem 3. Reduction for well-typed terms in the simple type system is strongly
normalizing. I.e., if Γ ⊢ b, then any reduction path from b terminates (and reaches
the same result, due to confluence). As a corollary, the simply-typed CPS-calculus
is logically consistent.

3 Discussion – A Logic of Continuations

As the CPS-calculus (and thus Appel’s IR) can be used as a logic system, one
might wonder: has such a system appeared before somewhere else? Although not
in the actual order of the insights that have led to this result, let us recall that,
as stated by Thielecke [23], the CPS-calculus is a subset of both λ-calculus and
the π-calculus.

The reduction relation for the CPS-calculus, although representing optimiza-
tion rewriting steps in compilers, appears in an almost identical fashion in the
work of Honda, Yoshida and Berger [13,25,10] for the π-calculus in their study

No Need to Imply Anything 5

p→ p

C[x(⃗y)p] | !x(⃗z).q → C[(νy⃗)(p | q[⃗y/z⃗])] | !x(⃗z).q (νx)!x(⃗y).p → 0

⊢ϕ p ▷ G

md(G) = O
⊢I 0 ▷ G

⊢ϕ p ▷ G ⊢χ q ▷ H ψ = ϕ� χ

⊢ψ p | q ▷ G⊙H

⊢ϕ p ▷ G, x: τI

⊢ϕ (νx: τI)p ▷ G

⊢O p ▷ G, y⃗: τ⃗O md(G) = O
⊢I !x(⃗y: τ⃗O).p ▷ x: (τ⃗O)

! → G

⊢I p ▷ G, y⃗: τ⃗I G, y⃗: τ⃗I ≍ x: (τ⃗I)
?

⊢O x(⃗y: τ⃗I)p ▷ G⊙ x: (τ⃗I)
?

Fig. 4. The control π-calculus

of sequentiality. Although not intended to be used as an actual semantics2 but
rather as a proof method which contains the usual π-calculus reduction, this
relation took inspiration from linear logic. The type system used for the control
π-calculus [13], along with the reduction rules used in it that matches compiler
optimizations, is given in Figure 4. We skip over some definitions for brevity,
but include the typing rules for comparison. In here, action types (ranged over
by G) represent directed acyclic graphs instead of the usual trees.

In [10], Honda and Laurent prove an equivalence between well-typed terms in
the control π-calculus and proof nets for Laurent’s polarized linear logic (LLP),
a subset and refinement of Girard’s linear logic where formulas have a polarity
and sequents are limited to at most one positive formula [14]. We note that,
although this system corresponds to LLP and may be seem as a Curry-Howard
correspondent to it, as claimed in [10], much of the constraints in the typing
rules are used to enforce a binding discipline – precisely the one that is used
in the CPS-calculus. The rigid syntactic structure of the CPS-calculus, which
requires it to be simultaneously a subset of the π-calculus and the λ-calculus,
provides many of the guarantees of the control π-calculus type system, which we
can formalize as follows.

Theorem 4. The π-calculus fragment of the CPS-calculus is equivalent to the
control π-calculus. As such, Γ ⊢ c if and only if there is a p such that c• ≡ p
and ⊢O p ▷ Γ•, where Γ• converts an environment into a null graph pointwise by
taking ¬(τ1, ..., τn)• = (τ•1 , ..., τ

•
n)

?.

It’s thus possible to argue that the simply-typed CPS-calculus relates to
LLP under the Curry-Howard correspondence by taking it’s conversion into the
π-calculus. Still, there’s another side to the CPS-calculus, as it’s also a fragment
of the λ-calculus as well. In Figure 5, we recall the rules of both LLP and the
implication-free fragment of minimal logic (IFML) [22], both in sequent calculus
style, and remark that there’s a perfect match between them.
2 Confirmed by Berger on https://cstheory.stackexchange.com/a/51515/51841.

6 Paulo Torrens

⊢ N,N⊥

⊢ Γ, N ⊢ ∆, N⊥

⊢ Γ,∆

⊢ Γ, P ⊢ ∆, Q

⊢ ∆,Γ, P ⊗Q

⊢ Γ, N,M

⊢ Γ, N `M

⊢ Γ, N

⊢ Γ, !N

⊢ Γ, P

⊢ Γ, ?P

A ⊢ A

Γ, A ⊢ B Γ ⊢ A
Γ ⊢ B

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ∧B

Γ, A,B ⊢ C
Γ, A ∧B ⊢ C

Γ, A ⊢ ⊥
Γ ⊢ ¬A

Γ ⊢ A
Γ,¬A ⊢ ⊥

Fig. 5. LLP (left) and IFML (right) in sequent calculus style

We note the presence of a duality between values (positive sequents) and
computations (negative sequents) in both logic systems; a computation doesn’t
yield a value, being witness to a contradiction instead. It is possible, however,
to give an alternative presentation to IFML in natural deduction style [22], as
illustrated in Figure 6. The syntax given in the judgements corresponds, up to
flattening of tuples [23], to the fragment of the λ-calculus for the CPS-calculus
as used by the (−)◦ function.

This exact fragment, which enforces that no function returns by dropping
implication, is known to be sound and complete for both the λ-calculus and
the λv-calculus and has appeared in the literature as the response calculus
by Führmann and Thielecke [8] and as a calculus called IL by Rudiak-Gould,
Mycroft and Peyton Jones [19]. It’s possible, then, to also relate the CPS-calculus
to IFML through its λ-calculus side. Operationally, the reduction semantics
based on compiler optimizations mimics the behavior of a sequent calculus, as
reduction in polarized proof nets justify those rules; still, the syntax requires that
terms in CPS also stay in natural deduction style, being able to be decomposed
and typed in both ways.

4 Conclusion

The CPS-calculus represents a proper theoretical foundation for IRs such as
Appel’s and Kennedy’s, and has proven itself useful for reasoning about their
use in production compiler implementations. In the presence of a simple type
system, terms in the IR become strongly normalizing with regard to known
optimizations and, as a consequence, sound as a logic system.

No Need to Imply Anything 7

x: A ⊢ x: A
Γ, x: A ⊢ e: ⊥
Γ ⊢ λx.e: ¬A

Γ ⊢ e: ¬A Γ ⊢ f : A
Γ ⊢ e f : ⊥

Γ ⊢ e: A Γ ⊢ f : B
Γ ⊢ ⟨e, f⟩: A ∧B

Γ ⊢ e: A ∧B
Γ ⊢ π1 e: A

Γ ⊢ e: A ∧B
Γ ⊢ π2 e: B

Fig. 6. IFML in natural deduction style

As the distillation of the target of CPS translations and having just enough
structure for it, the CPS-calculus can be seem both as a subset of the π-calculus
and the λ-calculus. The fragment of the former it represents corresponds directly
to Honda et al.’s control π-calculus, which relates to Laurent’s polarized linear
logic and justifies function inlining and dead code elimination through reduction
on polarized proof nets. At the same time, the fragment of the later is a subset
of the λ-calculus typeable by the implication-free fragment of minimal logic,
which demonstrates a deep connection between seemingly unrelated research
areas and extending the Curry-Howard correspondence to IRs. As a consequence,
the notions of an imperative λ-calculus, as proposed by Steele, and of a sequential
π-calculus actually coincide.

References

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press, USA
(1991)

2. Appel, A.W.: SSA is functional programming. SIGPLAN Not. 33(4), 17–20
(apr 1998). https://doi.org/10.1145/278283.278285, https://doi.org/10.1145/
278283.278285

3. Appel, A.W., Jim, T.: Shrinking lambda expressions in linear time. J. Funct.
Program. 7(5), 515–540 (sep 1997). https://doi.org/10.1017/S0956796897002839,
https://doi.org/10.1017/S0956796897002839

4. Chakravarty, M.M., Keller, G., Zadarnowski, P.: A functional perspective on SSA
optimisation algorithms. Electronic Notes in Theoretical Computer Science 82(2),
347–361 (2004). https://doi.org/https://doi.org/10.1016/S1571-0661(05)82596-
4, https://www.sciencedirect.com/science/article/pii/S1571066105825964,
cOCV’03, Compiler Optimization Meets Compiler Verification

5. Cong, Y., Osvald, L., Essertel, G.M., Rompf, T.: Compiling with continua-
tions, or without? whatever. Proc. ACM Program. Lang. 3(ICFP) (Jul 2019).
https://doi.org/10.1145/3341643, https://doi.org/10.1145/3341643

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Ef-
ficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (oct 1991).
https://doi.org/10.1145/115372.115320, https://doi.org/10.1145/115372.
115320

7. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compil-
ing with continuations. In: Proceedings of the ACM SIGPLAN 1993 Con-
ference on Programming Language Design and Implementation. p. 237–
247. PLDI ’93, Association for Computing Machinery, New York, NY,

8 Paulo Torrens

USA (1993). https://doi.org/10.1145/155090.155113, https://doi.org/10.1145/
155090.155113

8. Führmann, C., Thielecke, H.: On the call-by-value cps transform and
its semantics. Information and Computation 188(2), 241–283 (2004).
https://doi.org/https://doi.org/10.1016/j.ic.2003.08.001, https://www.
sciencedirect.com/science/article/pii/S0890540103001962

9. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
USA (1989)

10. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus
and polarised proof-nets. Theoretical Computer Science 411(22), 2223–2238
(2010). https://doi.org/https://doi.org/10.1016/j.tcs.2010.01.028, https://www.
sciencedirect.com/science/article/pii/S0304397510000538

11. Kelsey, R.A.: A correspondence between continuation passing style and static
single assignment form. In: Papers from the 1995 ACM SIGPLAN Workshop
on Intermediate Representations. p. 13–22. IR ’95, Association for Computing
Machinery, New York, NY, USA (1995). https://doi.org/10.1145/202529.202532,
https://doi.org/10.1145/202529.202532

12. Kennedy, A.: Compiling with continuations, continued. In: Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming. p. 177–190.
Association for Computing Machinery, New York, NY, USA (2007)

13. Kohei Honda, Nobuko Yoshida, M.B.: Control in the π-calculus. Tech. Rep.
DTR14-2, Imperial College, Department of Computing (2013),
urlhttps://www.doc.ic.ac.uk/research/technicalreports/2014/DTR14-2.pdf

14. Laurent, O.: Polarized proof-nets and ��-calculus. Theoretical Computer Sci-
ence 290(1), 161–188 (2003). https://doi.org/https://doi.org/10.1016/S0304-
3975(01)00297-3, https://www.sciencedirect.com/science/article/pii/
S0304397501002973

15. Levy, P.B.: Call-by-push-value. Ph.D. thesis, Queen Mary University of London,
UK (2001), https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233

16. Maurer, L., Downen, P., Ariola, Z.M., Peyton Jones, S.: Compiling with-
out continuations. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. p. 482–494. PLDI
2017, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3062341.3062380, https://doi.org/10.1145/3062341.
3062380

17. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci.
1, 125–159 (1975)

18. Reynolds, J.C.: The discoveries of continuations. LISP and Symbolic Computation
6, 233–247 (1993)

19. Rudiak-Gould, B., Mycroft, A., Jones, S.P.: Haskell is not not ml. In: Sestoft, P.
(ed.) Programming Languages and Systems. pp. 38–53. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

20. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-
passing style. SIGPLAN Lisp Pointers V(1), 288–298 (Jan 1992).
https://doi.org/10.1145/141478.141563, https://doi.org/10.1145/141478.
141563

21. Steele, G.L.: Rabbit: A compiler for scheme. Tech. rep., USA (1978)
22. Takeuti, G.: Proof Theory. Sole distributors for the U.S.A. and Canada, Elsevier

Science Pub. Co., New York, N.Y., U.S.A. (1975)
23. Thielecke, H.: Categorical Structure of Continuation Passing Style. Ph.D. thesis,

University of Edinburgh (Jul 1997)

No Need to Imply Anything 9

24. Thielecke, H.: Continuation semantics and self-adjointness. Electronic Notes in
Theoretical Computer Science 6, 348–364 (1997)

25. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the
π-calculus. Information and Computation 191(2), 145–202 (2004).
https://doi.org/https://doi.org/10.1016/j.ic.2003.08.004, https://www.
sciencedirect.com/science/article/pii/S0890540104000288

The Contributions of Alan Mycroft to Abstract
Interpretation

Patrick Cousot

CIMS, CS, New York University

1 Introduction
Abstract interpretation started in the late 70’s in Grenoble, France. At that
time Rod Burstall was visiting the computer science department (IMAG), and
Radhia and I have had numerous conversations (and steak-frites-salade lunches
at the GUC (Grenoble University Club) restaurant) with Rod. I suspect that
Alan Mycroft got news about abstract interpretation far north in Edinburgh,
Scotland, thanks to Rod Burstall supervising his thesis together with Robin
Milner. This led to his first publication [15] in 1980 and his thesis “Abstract
Interpretation and Optimising Transformations for Applicative Programs [16]
in 1982 (his second most cited paper on Google Scholar, not so common for
a thesis). His work originated a lot of research on strictness analysis and more
generally the static analysis of functional programs, a crucial contribution to the
theory, diffusion, and application of abstract interpretation.

Alan Mycroft has had a very productive career with numerous applied and
theoretical achievements in various domains of computer science and so my
overview of his contributions will be restricted to those explicitly connected
to abstract interpretation.

2 Strictness Analysis
The first problem Alan Mycroft solved was to determine statically when a lazy
call by need (or call by name) in a side-effect free, higher-order, functional lan-
guage (where the formal parameter is reevaluated in the context of the call
whenever (or the first time) it is used in the function body) by a more efficient
call by value (where the formal parameter is evaluated at call time and stored in
the context/environment of evaluation of the function body). Because of the ab-
sence of side effects, the only difference is when the evaluation of the parameter
does not terminate and it is never used in the function body/definition so that
call be need/name will terminate while call by value will not, as in let f x = f x
and g y = if true then 0 else y in g (f 0). The two call methods are there-
fore equivalent when the function call evaluated with call by need/name does not
terminates when the evaluation of the parameter does not terminate (assuming
the “observations” of a functional program execution is its final value or non-
termination). Explained in terms of denotational semantics, this is f(⊥) = ⊥,
where ⊥ denotes nontermination, which is the infimum in Scott domain, meaning
that f is strict, hence the term “strictness analysis”.

2.1 Alan Mycroft’s starting point

The state of the theory of abstract interpretation that Alan Mycroft relied on,
was for reachability/invariant verification/analysis of transition systems ⟨Σ, τ⟩ 1.

The objective is to infer an invariant I ∈ ℘(Σ) over approximating the reach-
able states {σ′ | ∃σ ∈ P . ⟨σ, σ′⟩ ∈ τ∗} ⊆ I from initial states P ∈ ℘(Σ) where
τ∗ ≜

∪
n∈N τn = lfp⊆ T with T ≜ λX . τ0 ∪ τ ◦ X is the reflexive transitive

closure of τ ∈ ℘(Σ × Σ), τ0 is the identity relation on the set of states Σ, and
τn+1 ≜ τn ◦ τ is the relation power. Define post(r)P ≜ {σ′ | ∃σ ∈ P . ⟨σ,
σ′⟩ ∈ r} to be the right-image of the states in P by the relation r on states. We
look for an invariant I such that post(lfp⊆ T) ⊆ I. The method is explained in
proposition 2 thereafter, proofs are relegated to the appendix.

Proposition 1. Given P ∈ ℘(Σ), we have the Galois connection ⟨℘(Σ × Σ),

⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
λr . post(r)P

γP ⟨℘(Σ), ⊆⟩2.

Proposition 2. For all P ∈ ℘(Σ), we have the following commutation property
λr . post(r)P ◦ T = FP ◦ λr . post(r)P with T (X) ≜ τ0 ∪ τ ◦ X and FP (X) ≜
P ∪ post(τ)X.

By the fixpoint exact abstraction under this commutation condition, if follows
that post(lfp⊆ T) = lfp⊆ FP , as shown by the following

Proposition 3. if ⟨C, ⪯⟩ and ⟨A, ≼⟩ are CPO’s (every increasing chain has
a lub, including the empty chain, so has an infimum), f ∈ C

c−→ C and f̄ ∈
A

c−→ A are continuous, ⟨C, ⪯⟩ −−−→←−−−α
γ ⟨A, ≼⟩ is a Galois connection, then the

commutation condition α ◦ f = f̄ ◦ α (respectively semi-commutation α ◦ f
.
≼

f̄ ◦ α, pointwise) implies that α(lfp⪯ f) = lfp⪯ f̄ (resp. α(lfp⪯ f) ≼ lfp≼ f̄).

The problem is thus to find an invariant I such that lfp⊆ FP ⊆ I. It is essen-
tial to remark that the computation ordering used for the fixpoint lfp⊆ FP and
the logical ordering in lfp⊆ FP ⊆ I to over approximate the reachable states are
the same so that the above fixpoint approximate abstraction under the semi-
commutation condition is directly applicable

Therefore, by proposition 3, using a Galois connection ⟨℘(Σ), ⊆⟩ −−−→←−−−α
γ ⟨A,

⩽⟩, the problem can be reduced to the computation of an abstract invariant
lfp⩽ α ◦ FP ◦ γ such that lfp⊆ FP ⊆ γ(lfp⩽ α ◦ FP ◦ γ), as desired.

Using a semi-commuting over approximation F̄P such that α ◦ F̄P

.
⩽ FP ◦ α

is also feasible since then lfp⊆ FP ⊆ γ(lfp⩽ F̄P), by proposition 3.

1 Alan and his followers refer to “flowchart abstract interpretation” whereas in my
thesis and POPL79, I had moved from flowcharts to transition systems for concise-
ness.

2 ⟨C, ⪯⟩ −−−→←−−−α
γ ⟨A, ≼⟩ denotes the fact that ⟨C, ⪯⟩ and ⟨A, ≼⟩ are posets, α ∈ C −→ A,

γ ∈ A −→ C, and ∀x ∈ C, y ∈ A . α(x) ≼ y ⇔ x ⪯ γ(y).

2.2 Alan Mycroft’s pioneer strictness analysis

Alan Mycroft formulates strictness analysis by first defining the denotational
semantics of the (recursive) function as a fixpoint lfp⊑ F ∈ D⊥

c−→ D⊥ where
the domain D⊥ is a CPO ⟨D⊥, ⊑, ⊥, ⊔⟩ with ordering ⊑ and the functional
F ∈ (D⊥

c−→ D⊥)
c−→ (D⊥

c−→ D⊥) is continuous. (F is defined on pages 38/39
of his thesis by structural induction on the functional programs he considers. As
stated in [16, page 54], ⊑ is taken to be Scott ordering ⊥ ⊑ ⊥ ⊏ x ⊑ x, x ∈ D
on the flat domain D⊥ = D ∪ {⊥}, ⊥ ̸∈ D).

The collecting semantics of a function with denotational semantics f ∈
D⊥

c−→ D⊥ is post(f)P ≜ {f(x) | x ∈ P} where P ∈ ℘(D⊥) is a set of
possible values of the parameter (including ⊥ in case of non termination) and
post(f)P provides the possible results of the function for these parameters. Since
the considered functions are total and determinitic, the image of a singleton is a
singleton. Moreover, post preserves arbitrary joins so that the collecting seman-
tics post(f) belongs to ℘(D⊥)

1∪−→ ℘(D⊥) defined as

℘(D⊥)
1∪−→ ℘(D⊥) ≜ {ϕ ∈ ℘(D⊥) −→ ℘(D⊥) | ∀x ∈ D⊥ . |ϕ({x})| = 1 ∧

∀X ∈ ℘(℘(D⊥)) . post(f)
∪

P∈X P =
∪

P∈X post(f)P}

as well as to post(f) ∈ ℘(D⊥) \ {∅} 1∪−→ ℘(D⊥) \ {∅} since post(f)X = ∅ if and
only if X = ∅.

Proposition 4. We have the Galois connection ⟨D⊥ −→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂

⟨℘(D⊥) \ {∅} 1∪−→ ℘(D⊥) \ {∅},
.

⊑̂⟩ where γ̂(ϕ) ≜ λx . let {y} = ϕ({x}) in y

and ⊑̂ is Egli-Milner ordering X ⊑̂ Y ≜ (∀x ∈ X . ∃y ∈ Y . x ⊑ y ∧ ∀y ∈ Y .

∃x ∈ X . x ⊑ y) and
.

⊑̂ is its pointwise extension.

In order to characterize post(lfp⊑ F) as a fixpoint, we consider the commu-
tation condition

Proposition 5. post ◦ F = F̂ ◦ post with F̂ (ϕ)P ≜ post(F (γ̂(ϕ)))P .

By propositions 4, 5, and 3, we have

post(lfp
.
⊑ F) = lfp

.
⊑̂ F̂ (1)

(where F̂ is defined by the equations on top of page 42 of Alan’s thesis).
On page 53, Mycroft defines α♯(S) ≜ LS = {⊥} ¿ 0 : 1 M and α♭(S) ≜ L⊥ ∈

S ¿ 0 : 1 M so that

Proposition 6. Let B ≜ {0, 1} and ≤ be logical implication. Then ⟨℘(D⊥)\{∅},
⊆⟩ −−−→←−−−

α♯

γ♯

⟨B, ≤⟩ and ⟨℘(D⊥), ⊆⟩ −−−→←−−−
α♭

γ♭

⟨B, ≤⟩ with γ♯(b) = L b = 0 ¿ {⊥} : D⊥ M,
γ♭(b) = L b = 1 ¿ D : D⊥ M, and 0 < 1.

Observe that ⟨℘(D⊥) \ {⊑̂}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ does not hold since e.g. for

Scott ordering, we have α♯(S) ≤ 1 but not S ⊑̂ γ♯(1) = D⊥ since for S ⊂ D
and y ∈ D \ S ⊆ D⊥ we don’t have ∃x ∈ S . x ⊑ y since for Scott ordering
the only possibility is x = y ̸∈ S. So proposition 3 is not applicable to express
α♯(post(lfp

.
⊑ F) = α♯(lfp

.
⊑̂ F̂)) as a fixpoint. This is the main difficulty Alan

Mycroft had to solve with the theory of abstract interpretation, as available as
the time. The required generalization of proposition 3 is the following

Proposition 7. Let ⟨C, ⊥, ⊑, ⊔⟩ be a concrete CPO for the computational
ordering ⊑ and f ∈ C

c−→ C be continuous. Let ⟨C, ≤⟩ be a poset for the
approximation ordering ≤.

Let ⟨A, ⊥♯, ⊑♯, ⊔♯⟩ be an abstract CPO and f ♯ ∈ A
c−→ A be continuous.

Let ⟨C, ≤⟩ −−−→←−−−α
γ ⟨A, ⊑♯⟩ be an abstraction such that

⊥ ≤ γ(⊥♯) (2)
∀x ∈ C, y ∈ A . (x ≤ γ(y))⇒ (f(x) ≤ γ(f ♯(y)) (3)

for all increasing chains ⟨xi, i ∈ N⟩ for ⊑ and ⟨yi, i ∈ N⟩ for ⊑♯ .

(∀i ∈ N . xi ≤ γ(yi))⇒
⊔

i∈N
xi ≤ γ(

⊔♯

j∈N
yj) (4)

Then lfp⊑ f ≤ γ(lfp⊑♯

f ♯).

Notice that in proposition 7, the computational ordering ⊑ and the approxi-
mation ordering ≤ may differ, whereas in proposition 3 they must be the same.
This solves Alan problem for strictness analysis. Define #–α ♯(f) ≜ α♯ ◦ f ◦ γ♯ and
#–γ ♯(f) ≜ γ♯ ◦ f ◦ α♯ so that

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.
⊆⟩ −−−−→←−−−−

#–α ♯

#–γ ♯

⟨B i−→ B,
.
≤⟩ (5)

where B i−→ B is the set of ≤-increasing Boolean functions. Define F̂ ♯ ≜ #–α ♯ ◦
F̂ ◦ #–γ ♯ so that the hypotheses (2), (3), and (4) of proposition 7 are satisfied with
C = ℘(D⊥)

1∪−→ ℘(D⊥), ⊑ =
.

⊑̂, A = B i−→ B, ⊑♯ =
.
≤, ≤ =

.
⊆, α = #–α ♯, and

γ = #–γ ♯. Proposition 7 applies to F̂ ♯.

Proposition 8. lfp
.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Therefore by (1) and proposition 8, we have post(lfp
.
⊑ F) = lfp

.
⊑̂ F̂

.
⊆ #–γ ♯(lfp

.
≤ F̂ ♯).

Since F̂ ♯ operates on a finite domain, f ♯ = lfp
.
≤ F̂ ♯ is computable for any func-

tional program. Assume that f ♯(0) = 0. Then post(lfp
.
⊑ F){⊥} ⊆ γ♯(0) = {⊥},

proving strictness F (⊥) = ⊥. Mycroft’s strictness analysis method is sound (and
also incomplete by Rice’s theorem).

Alan applies the same approach to the lower abstraction α♭ but this is of lim-
ited applicability since function nontermination be can proved with this abstrac-
tion only when it does not depend upon the values of the parameters. However,

it is anticipating the present-day interest in under approximation verification
and static analysis!

For functions with multiple parameters, Mycroft uses a Cartesian abstraction
in the collecting semantics [16, top of page 42] which is more efficient but less
precise that a relational analysis.

The thesis goes on in chapter 4 to show that call-by-need can be replaced by
call-by-value for strict functions, see also [15].

2.3 The large body of research on strictness analysis in the 1980/90s

Alan Mycroft strictness analysis originated an enormous amount of work on the
subject in the 80’s and early 90’s, see e.g. [1]. Strictness analysis has routinely
found its way in modern compilers for lazy purely functional languages such as
Haskell3.

Although purely Boolean, strictness analysis suffers combinatorial explosions
at higher-orders, although widenings, which have not been much investigated in
this context, might certainly have helped [11].

2.4 Connection between call-by-value and call-by-name

In his thesis, Alan proved that call-by-need strict functions without side effects
can be replaced by call-by-value functions. Nearly 40 years later, he came back to
the subject, establishing a Galois connection between call-by-name and call-by-
value for functions with limited side effects [14,13,12]. The Galois connection is
between pre-ordered programs, where programs can be understood as encoding
their set-based semantics, which established the link with abstract interpreta-
tion.

3 Sharing Analysis

In chapter 5 of his thesis [16], Alan Mycroft considers Lisp-like lists and two
versions of LISP, a pure applicative LISP-A (declarative without side effect)
and destructive LISP-D (with data structure alteration rplaca, rplacd, nconc,
expressed using an explicit deallocation by free). The objective is to analyse
declarative programs and optimize them into destructive ones.

To go into more details of LISP-A (we don’t consider LISP-D and the trans-
formation of LISP-A into LISP-D described in [16, section 5.8] and proved cor-
rect in [16, section 5.9]). Let A be a set of atoms, L be a disjoint set of locations
and V = A ∪ L, with A ∩ L = ∅ be the set of values. Assume that the mem-
ory heap/store is represented by binary directed acyclic graphs (DAGs) H ∈ H
which are sets of nodes/cells ⟨v, vh, vt, f⟩ ∈ H such that v ∈ L is the loca-
tion of the node, vh, vt ∈ V are the respective left/car/head and right/cdr/tail
3 e.g. in the open source compiler and interactive environment GHC

wiki.haskell.org/Performance/Strictness or the strcitness analysis of The He-
lium Compiler for a subset of Haskell.

values of the node, and f ∈ B records whether the node has been explicitly
freed. The locations uniquely identify nodes in that if H ∋ ⟨v, vh, vt, f⟩ ̸= ⟨v′,
v′h, v′t, f ′⟩ ∈ H then v ̸= v′. If v ∈ L, we define the head h(v) = vh and
the tail t(v) = vt, this is an error if vh, vt ∈ A or f = true. The locations
allocated in the heap H are L(H) ≜ {v | ⟨v, vh, vt, f⟩ ∈ H}. The roots of
the R(H) graph H have no predecessors R(H) ≜ {v ∈ L(H) | ∀v′, v′′, f . ⟨v′,
v, v′′, f⟩ ̸∈ H ∧ ⟨v′, v′′, v, f⟩ ̸∈ H}. The heap/graph has no cycles, meaning
that if v1 . . . vn ∈ L(H)n, n ⩾ 0 is any sequence of heap locations such that
vi+1 ∈ {h(vi), t(vi)}, i ∈ [1, n], then ∀0 ⩽ i < j ⩽ n . vi ̸= vj . The construction
operation c (cons) is c(vh, vt)H ≜ let v ̸∈ L(H) in H ∪ {⟨v, vh, vt, false⟩} where
vh, vt ∈ A∪ L(H) are atoms or locations of nodes allocated in H. It follows that
h(c(vh, vt)) = vh and t(c(vh, vt)) = vt. The considered language [16, page 154]
is a functional language with a denotation for atoms, primitives including c, h,
t, free, atom (checking for atomicity). The fixpoint denotational semantics of a
function denotation [16, Section 5.12] for LISP-D is a function f taking the value
v ∈ A∪L(H) of the actual parameter and a memory heap H as a parameter and
returning the possibly modified heap H ′ and a returned value v′ ∈ A∪ L(H ′) or
⊥ in case of non termination (so f ∈ L×H→ L ∪ {⊥} ×H).

Alan looks for “an approximation to the set of paths which will actually exist
at run time, but as usual in abstract interpretation (see chapter 2) the paths
we infer will be a superset of those which can occur at run time”. He claims
[16, Section 5.7, page 134] that his abstraction was inspired and generalizes the
isolation classes of Jacob T. Schwarz4, to provide information on “how shared
an object might be”.

Given a heap H ∈ H, v, v′ ∈ L(H), the paths Π(H)⟨v, v′⟩ from v to v′ are

Π(H)⟨v, v′⟩ ≜ {x0 . . . xn ∈ L(H)n | x0 = v ∧ ∀i ∈ [0, n[. xi+1 ∈ {h(xi), t(xi)} ∧
xn = v′}

Π(H)⟨v, v′⟩ is empty when v or v′ is an atom (including erroneous h and t).
Let O(H) be the set of locations on the heap H reachable from the roots of H
through heads and tails by one path only.

O(H) ≜ {v ∈ A ∪ L(H) ∪ {⊥} | (v ∈ L(H))⇒ (∀v′ ∈ R(H) . |Π(H)⟨v′, v⟩| = 1)}
(where |S| is the cardinality of a set S). ∆h(H)v (respectively ∆t(H)v, ∆(H)v)
is the set of descendants of location v ∈ L(H) in the heap H going exclusively
through heads (resp. through tails only, through heads or tails).

∆h(H)v ≜ {v′ | ∃x0 . . . xn ∈ L(H)n . x0 = v ∧ ∀i ∈ [0, n[. xi+1 = h(xi) ∧ xn = v′}
∆t(H)v ≜ {v′ | ∃x0 . . . xn ∈ L(H)n . x0 = v ∧ ∀i ∈ [0, n[. xi+1 = t(xi) ∧ xn = v′}
∆(H)v ≜ {v′ | Π(H)⟨v, v′⟩ ̸= ∅}
4 citing Schwarz, J. Verifying the safe use of destructive operations in applicative

programs. Program Transformations - Proc. of the 3rd Int’l Symp. on Program-
ming, Dunod Informatique, 1978, pp. 395–411, also DAI research report 55, Dept.
of Artificial Intelligence, Edinburgh University, published while Jacob was visiting
Edinburgh.

The abstract domain is the (complete) lattice

A =

ti

onehlst onelist
one

arb

The meaning of the abstract values (called “isolation classes”) is as follows.

– The supremum arb can denote any atom (including error), element on the
heap, or non termination. γ(arb) ≜ {⟨v, H⟩ | H ∈ H ∧ v ∈ A ∪ L(H) ∪ {⊥}}.

– The abstract value one can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, so, “the
object described [by one] cannot be a shared CONS node” [16, page 138].
γ(one) ≜ {⟨v, H⟩ | H ∈ H ∧ v ∈ O(H)} .

– The abstract value onehlst can denote any atom, non termination, or element
on the heap accessible from the roots of the heap by one path only, and such
that all its descendants by the head h are not accessible from the roots in any
other way. γ(onehlst) ≜ {⟨v, H⟩ | ∀v′ ∈ ∆h(H)v . v′ ∈ O(H)} (this includes
v′ = v).

– The abstract value onelist is similar, but for tails only. So these nodes are
uniquely accessible from the roots of H and so are all their descendants
through tails only. γ(onelist) ≜ {⟨v, H⟩ | ∀v′ ∈ ∆t(H)v . v′ ∈ O(H)}

– The infimum ti denotes any atom, nontermination, or location on the heap
such that all its descendants are accessible form the roots by one path only
(“objects totaly unshared from other objects” [16, page 135]). γ(ti) ≜ {⟨v,
H⟩ | ∀v′ ∈ ∆(H)v . v′ ∈ O(H)}

Observe that γ(onehlst)⊓ γ(onelist) = γ(ti) so we have a Galois connection with
the abstraction of P ∈ ℘(V×H) such that α(P) ≜

d{a) ∈ A | P ⊆ γ(a)}. The
abstraction is extended to functions of the collecting semantics f ∈ ℘(V×H) i−→
℘(V× H) by α(f) ≜ α ◦ f ◦ γ. This provides a fixpoint definition of the isolation
class of a function in terms of the isolation classes of its parameters and its
textual definition” [16, page 140], provided variables are handled correctly, as in
[16, section 5.7.5], as roots of the DAG. Since the abstract domain is finite, the
abstraction is computable for each subexpression appearing in a program.

3.1 Static analysis of shared data structures

Alan is one of the early users of abstract interpretation5 for analyzing programs
manipulating shared recursive data structures, a complex problem which, with
parallelism, is still a hot research subject nowadays.
5 following Cousot and Cousot, IFIP FDPC, 1978.

4 Main contributions of Alan Mycroft to Static Program
Analysis

We have already underlined the pioneer work of Alan Mycroft on strictness
analysis in Sect. 2.3 and linked data structure analysis in Sect. 3.1. In this section,
we outline other important contributions to static program analysis (excluding
dynamic analysis).

4.1 Denotational semantics based abstract interpretation
The work of Alan Mycroft [15,16] originated the used of denotational semantics
as a standard semantics, as opposed to operational semantics, for abstract inter-
pretation [20]. “The motivation is that abstract interpretation of denotational
language definitions allows approximation of a wide class of programming lan-
guage properties” [9, section 1.5]. The interest in denotational semantics, which
is an abstract interpretation of operational semantics, later declined since it is
not expressive enough (e.g. for trace or hyper properties) although basic princi-
ples like structural induction on the program syntax have perdured.

4.2 Static Analysis
Alan interest in static program analysis has persisted all along his scientific car-
rier, including for strictness analysis [3], analysis of procedures and functions
[8,19], microcode [17], hardware [27,26], although his concerns in correctness
proofs somewhat faded while concentrating on data flow analysis (in which pro-
grams are represented by graphs6 and analysis algorithms are traditionally pos-
tulated rather than proved sound with respect to a semantics7) [7,6,4]. This
informal approach is nevertheless with some exceptions, mainly without refer-
ence to a formal semantics [24,5,10].

4.3 Completeness in abstract interpretation
Alan Mycroft was one of the first [18] to develop completeness8 in abstract in-
terpretation, a subject that has since proliferated. His example of multiplication
complete for sign analysis but not addition, is provided as introductory exam-
ple in (almost) all papers on the subject! Moreover, [18] introduces predicate
abstraction, somewhat before the standard reference 9. Unfortunately fixpoints
are postponed to later research. The fixpoint abstraction completeness problem
is not yet solved satisfactorily.
6 ironically close to decried “flowchart abstract interpretation”.
7 for example the classical liveness analysis in [6] is wrong since use is a syntactic

over approximation of the semantic notion of use of a variable value, whereas, being
negated, it should be an underapproximation, see Patrick Cousot: Syntactic and
Semantic Soundness of Structural Dataflow Analysis. SAS 2019: 96-117

8 Cousot and Cousot, POPL, 1979
9 Susanne Graf, Hassen Saïdi: Construction of Abstract State Graphs with PVS. CAV

1997: 72-83

4.4 Types and Effects

Alan Mycroft most cited work is on types and type inference [21] and he has also
maintained interest and important contributions on the subject [2,23], including
effect systems [22,25]. Alan certainly understood the close link between types and
abstract interpretation. An example is his thesis “There is an analogy between
the system described here and the ”most general type” inference system used in
a language such as ML [17]”10 [16, page 67]. Another is “Control-flow operators
also provide a link to abstract interpretation [6]. Primitive effectful operations
in the concrete semantics are abstracted to effects in an effect algebra.” [22,
page 18]. Finally in [18], he writes “Mycroft and Jones [10] manage to exhibit
the Hindley-Milner type system as an abstract interpretation of the untyped
�-calculus but the result is much more unwieldly to use than the inference rule
formulation.” (where [10] in this citation is our [19]).

He has certainly been too overwhelmed by new ideas to take time to explore
this connection in more depth.

5 Conclusion

Starting from his PhD thesis [16], we have taken a rapid tour of Alan Mycroft’s
publications related to abstract interpretation, where he played an outstanding
pioneer role and went on to regularly introduce new inspiring ideas in the field.
Personnaly, I would have hoped this he spend more time on the subject since he
one of the few who, beyond theory, have a strong interest in applicability and
practical applications as his other works in other domains do show.

References

1. Abramsky, S., Hankin, C. (eds.): Abstract Interpretation of Declarative Languages.
Ellis Horwood (1987)

2. Dolan, S., Mycroft, A.: Polymorphism, subtyping, and type inference in mlsub. In:
POPL. pp. 60–72. ACM (2017)

3. Ernoult, C., Mycroft, A.: Untyped strictness analysis. J. Funct. Program. 5(1),
37–49 (1995)

4. Feigin, B., Mycroft, A.: Formally efficient program instrumentation. In: RV. Lec-
ture Notes in Computer Science, vol. 6418, pp. 245–252. Springer (2010)

5. Gharat, P.M., Khedker, U.P., Mycroft, A.: Generalized points-to graphs: A precise
and scalable abstraction for points-to analysis. ACM Trans. Program. Lang. Syst.
42(2), 8:1–8:78 (2020)

6. Ivaskovic, A., Mycroft, A., Orchard, D.: Data-flow analyses as effects and graded
monads. In: FSCD. LIPIcs, vol. 167, pp. 15:1–15:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

10 where [17] refers to Michael J. C. Gordon, Robin Milner, F. Lockwood Morris, Mal-
colm C. Newey, Christopher P. Wadsworth: A Metalanguage for Interactive Proof
in LCF. POPL 1978: 119-130.

7. Jaiswal, S., Khedker, U.P., Mycroft, A.: A unified model for context-sensitive pro-
gram analyses: : The blind men and the elephant. ACM Comput. Surv. 54(6),
114:1–114:37 (2022)

8. Jones, N.D., Mycroft, A.: Data flow analysis of applicative programs using minimal
function graphs. In: POPL. pp. 296–306. ACM Press (1986)

9. Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook
of logic in computer science. Volume 4. Semantic modelling, pp. 527–636. Claren-
don Press (1995)

10. Khedker, U.P., Dhamdhere, D.M., Mycroft, A.: Bidirectional data flow analysis for
type inferencing. Comput. Lang. Syst. Struct. 29(1-2), 15–44 (2003)

11. Mauborgne, L.: Abstract interpretation using typed decision graphs. Sci. Comput.
Program. 31(1), 91–112 (1998)

12. McDermott, D., Mycroft, A.: Call-by-need effects via coeffects. Open Comput. Sci.
8(1), 93–108 (2018)

13. McDermott, D., Mycroft, A.: Extended call-by-push-value: Reasoning about effect-
ful programs and evaluation order. In: ESOP. Lecture Notes in Computer Science,
vol. 11423, pp. 235–262. Springer (2019)

14. McDermott, D., Mycroft, A.: Galois connecting call-by-value and call-by-name. In:
FSCD. LIPIcs, vol. 228, pp. 32:1–32:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022)

15. Mycroft, A.: The theory and practice of transforming call-by-need into call-by-
value. In: Symposium on Programming. Lecture Notes in Computer Science,
vol. 83, pp. 269–281. Springer (1980)

16. Mycroft, A.: Abstract interpretation and optimising transformations for applicative
programs. Ph.D. thesis, University of Edinburgh, UK (1982)

17. Mycroft, A.: A study on abstract interpretation and ’validating microcode alge-
braically’. In: Abramsky and Hankin [1], pp. 199–218

18. Mycroft, A.: Completeness and predicate-based abstract interpretation. In: PEPM.
pp. 179–185. ACM (1993)

19. Mycroft, A., Jones, N.D.: A relational framework for abstract interpretation. In:
Programs as Data Objects. Lecture Notes in Computer Science, vol. 217, pp. 156–
171. Springer (1985)

20. Mycroft, A., Nielson, F.: Strong abstract interpretation using power domains (ex-
tended abstract). In: ICALP. Lecture Notes in Computer Science, vol. 154, pp.
536–547. Springer (1983)

21. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. In: Logic Pro-
gramming Workshop. pp. 107–122. Núcleo de Intelligência Artificial, Universidade
Nova De Lisboa, Portugal (1983)

22. Mycroft, A., Orchard, D.A., Petricek, T.: Effect systems revisited - control-flow
algebra and semantics. In: Semantics, Logics, and Calculi. Lecture Notes in Com-
puter Science, vol. 9560, pp. 1–32. Springer (2016)

23. Orchard, D.A., Mycroft, A.: Efficient and correct stencil computation via pattern
matching and static typing. In: DSL. EPTCS, vol. 66, pp. 68–92 (2011)

24. Rodriguez-Prieto, O., Mycroft, A., Ortin, F.: An efficient and scalable platform
for java source code analysis using overlaid graph representations. IEEE Access 8,
72239–72260 (2020)

25. Schrijvers, T., Mycroft, A.: Strictness meets data flow. In: SAS. Lecture Notes in
Computer Science, vol. 6337, pp. 439–454. Springer (2010)

26. Thompson, S., Mycroft, A.: Abstract interpretation of combinational asynchronous
circuits. In: SAS. Lecture Notes in Computer Science, vol. 3148, pp. 181–196.
Springer (2004)

27. Thompson, S., Mycroft, A.: Abstract interpretation of combinational asynchronous
circuits. Sci. Comput. Program. 64(1), 166–183 (2007)

A Proofs for Section 2 (Strictness Analysis)

Proof (proposition 1).
post(r)P ⊆ Q

⇔ {σ′ | ∃σ . σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r} ⊆ Q Hdef. postI
⇔ ∀σ′ . (∃σ . σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r)⇒ σ′ ∈ Q Hdef. ⊆I
⇔ ∀σ′ . ∀σ . (σ ∈ P ∧ ⟨σ, σ′⟩ ∈ r)⇒ σ′ ∈ Q) Hdef. ⇒I
⇔ ∀σ . ∀σ′ . (⟨σ, σ′⟩ ∈ r)⇒ (σ ∈ P ⇒ σ′ ∈ Q) Hdef. ∀ and ⇒I
⇔ r ⊆ {⟨σ, σ′⟩ | σ ∈ P ⇒ σ′ ∈ Q} Hdef. ⊆I
⇔ r ⊆ γP (Q) Hby defining γP (Q) = (P ×Q) ∪ (Σ \ P)×ΣI

Proof (proposition 2).
λr . post(r)P ◦ T (X)

= post(T (X))P Hdef. function composition ◦I
= post(τ0 ∪ τ ◦ X)P Hdef. T I
= post(τ0)P ∪ post(τ ◦ X)P Hpost preserves arbitrary unionsI
= P ∪ post(τ)(post(X)P) Hdef. postI
= P ∪ post(τ)(λr . post(r)(X)) Hdef. function applicationI
= FP (λr . post(r)(X)) H with FP (X) ≜ P ∪ post(τ)X I
= FP ◦ λr . post(r)(X) Hdef. function composition ◦I

Proof (proposition 3). Let fn and f̄n, ∈ N be the iterates of f and f̄ from the
infima ⊥ and ⊥̄. In a Galois connection, α preserves existing arbitrary joins in
particular the infimum so α(f0) = α(⊥) = ⊥̄ = f̄0. Assume α(fn) = f̄n by
induction hypothesis. By the commutation condition, α(fn+1) = α(f(fn)) =
f̄(α(fn)) = f̄(f̄n) = f̄n+1. By recurrence, ∀n ∈ N . α(fn) = f̄n. Since f and
f̄ are continuous, they are increasing (isotone/monotone), so their iterates are
increasing, and their limits do exist in the CPO. By continuity α(lfp⪯ f) =
α(

∪
n∈N fn) =

∨
n∈N α(fn) =

∨
n∈N f̄n = lfp≼ f̄ . The proof is similar in the

inequality case.

Proof (proposition 4).
post(f)

.

⊑̂ ϕ

⇔ ∀P ∈ ℘(D⊥) . post(f)P ⊑̂ ϕ(P) Hpointwise def. of
.

⊑̂I
⇔ ∀P ∈ ℘(D⊥) . {f(x) | x ∈ P} ⊑̂ ϕ(P) Hdef. postI
⇔ ∀P ∈ ℘(D⊥) . (∀x ∈ {f(x) | x ∈ P} . ∃y ∈ ϕ(P) . x ⊑ y ∧ ∀y ∈ ϕ(P) . ∃x ∈
{f(x) | x ∈ P} . x ⊑ y) Hdef. ⊑̂I

⇔ ∀P ∈ ℘(D⊥) . (∀x ∈ P . ∃y ∈ ϕ(P) . f(x) ⊑ y ∧ ∀y ∈ ϕ(P) . ∃x ∈ P . f(x) ⊑
y) Hdef. ∈I

⇔ ∀x ∈ D⊥ . f(x) ⊑ let {y} = ϕ({x}) in y

H(⇒) Take P = {x}, x ∈ D⊥, then ∃y ∈ ϕ({x}) . f(x) ⊑ y. By
ϕ ∈ ℘(D⊥)

1∪−→ ℘(D⊥), we have {y} = ϕ({x}) so f(x) ⊑ let {y} =
ϕ({x}) in y.
(⇐) Assume that P ∈ ℘(D⊥) and x ∈ P . Then {y} = ϕ({x}) ⊆∪

z∈P ϕ({z}) = ϕ(
∪

z∈P {z}) = ϕ(P) proving ∃y ∈ ϕ(P) . f(x) ⊑ y.
Moreover, take any y ∈ ϕ(P) = ϕ(

∪
x∈P {x}) =

∪
x∈P ϕ({x}), there

exists x ∈ P such that y ∈ ϕ({x}), that is {y} = ϕ({x}) since ϕ({x}) is
a singleton, proving f(x) ⊑ y by hypothesis.I

⇔ f
.
⊑ λx . let {y} = ϕ({x}) in y Hpointwise def.

.
⊑I

⇔ f
.
⊑ γ̂(ϕ) Hdef. γ̂I

It follows that ⟨D⊥ −→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂ ⟨℘(D⊥)

1∪−→ ℘(D⊥),
.

⊑̂⟩ so that by

restriction to the continuous functions, we also have ⟨D⊥
c−→ D⊥, ⊑̇⟩ −−−−−→←−−−−−

post
γ̂

⟨℘(D⊥)
1∪−→ ℘(D⊥),

.

⊑̂⟩. Moreover post(f)X = ∅ if and only if X = ∅ so that
⟨D⊥

c−→ D⊥, ⊑̇⟩ −−−−−→←−−−−−
post
γ̂ ⟨℘(D⊥ \ {∅}) 1∪−→ ℘(D⊥ \ {∅}),

.

⊑̂⟩.

Proof (proposition 5). Given F ∈ (D⊥ −→ D⊥) −→ (D⊥ −→ D⊥) and f ∈
D⊥ −→ D⊥, we have

post(F (f))P

= post(F (λx . f(x)))P Hdef. λ notationI
= post(F (λx . let {y} = {f(x)} in y))P Hdef. singleton equalityI
= post(F (λx . let {y} = {f(z) | z ∈ {x}} in y))P Hdef. ∈I
= post(F (λx . let {y} = λX . {f(x) | x ∈ X}({x}) in y))P Hdef. applicationI
= post(F (γ̂(λX . {f(x) | x ∈ X})))P Hdef. γ̂I
= post(F (γ̂(post(f))))P Hdef. postI
= F̂ (post(f))P Hdef. F̂ (ϕ)P ≜ post(F (γ̂(ϕ)))P I
Proof (proposition 6). Let S ∈ ℘(D⊥) \ {∅} and b ∈ B.

α♯(S) ≤ b

⇔ LS = {⊥} ¿ 0 : 1 M ≤ b Hdef. α♯I
⇔ LS ⊆ {⊥} ¿ 0 : 1 M ≤ b Hsince S ∈ ℘(D⊥) \ {∅}I
⇔ (b = 0)⇒ (S ⊆ {⊥}) Hby cases 0 or 1 for b with 0 ≤ 0 and 1 ̸≤ 0I
⇔ S ⊆ L b = 0 ¿ {⊥} : D⊥ M HS ⊆ D⊥I
⇔ S ⊆ γ♯(b) Hdef. γ♯I

α♭(S) ≤ b

⇔ L⊥ ∈ S ¿ 0 : 1 M ≤ b Hdef. α♭I
⇔ (b = 0)⇒ (⊥ ∈ S) Hby cases 0 or 1 for b with 0 ≤ 0 and 1 ̸≤ 0I

⇔ (b = 1)⇒ (⊥ ̸∈ S) Hby cases b = 0 or b = 1I
⇔ S ⊆ L b = 1 ¿ D : D⊥ M Hsince S ⊆ D⊥I
⇔ S ⊆ γ♭(b) Hdef. γ♭I
Proof (proposition 7). Let ⟨fn, n ∈ N⟩ be the increasing iterates of f from ⊥
such that lfp⊑ f =

⊔
n∈N fn. Let ⟨f ♯n, n ∈ N⟩ be the increasing iterates of f ♯

from ⊥♯ such that lfp⊑♯

f ♯ =
⊔♯

l∈N
f ♯n. By (2), we have f0 = ⊥ ≤ γ(⊥♯) = γ(f ♯0).

Assume by induction hypothesis that fn ≤ γ(f ♯n). Then by (3), we have fn+1 =

f(fn) ≤ γ(f ♯(f ♯n)) = γ(f ♯n+1
), proving that ∀n ∈ N . fn ≤ γ(f ♯n). By (4), we

have lfp⊑ f =
⊔

n∈N fn ≤ γ(
⊔♯

n∈N
f ♯n) = γ(lfp⊑♯

f ♯).11

Proof (of (5)).
#–α ♯(f)

.
≤ f ♯

⇔ ∀b ∈ B . α♯ ◦ f ◦ γ♯(b) ≤ f ♯(b) Hpointwise def.
.
⊆ and def. #–α ♯I

⇔ ∀b ∈ B . f ◦ γ♯(b) ⊆ γ♯ ◦ f ♯(b) HGalois connection in prop. (6)I
⇔ ∀X ∈ ℘(D⊥) . f(X) ⊆ γ♯ ◦ f ♯ ◦ α♯(X)

H(⇐) Take X = γ♯(b) and γ♯ ◦ f ♯(b) ⊆ γ♯ ◦ f ♯ ◦ α♯ ◦ γ♯(b) since α♯ ◦ γ♯

is reductive in ⟨℘(D⊥) \ {∅}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ of prop. 6, and γ♯ and
f ♯(b) hence their composition is reductive.

(⇒) γ♯ ◦ α♯ is expansive in ⟨℘(D⊥) \ {∅}, ⊆⟩ −−−→←−−−
α♯

γ♯

⟨B, ≤⟩ of prop.
6, f preserves joins so is increasing, so that taking b = α♯(X) we have
f(X) ⊆ f ◦ γ♯ ◦ α♯(X) ⊆ γ♯ ◦ f ♯(α♯(X)b)I

⇔ ∀X ∈ ℘(D⊥) . f(X) ⊆ #–γ ♯(f ♯)X Hdef. #–γ ♯I
⇔ f

.
⊆ #–γ ♯(f ♯) Hpointwise def.

.
⊆I

Proof (of 8).
⊥ ≤ #–γ ♯(⊥♯)

⇔ λX . {⊥} .
⊆ #–γ ♯(λx . 0) Hdef. ⊥ and ⊥♯I

⇔ ∀X ∈ ℘(D⊥) . {⊥} ⊆ γ♯ ◦ λx . 0 ◦ α♯(X) Hpointwise def. of
.
⊆ and def. #–γ ♯I

⇔ {⊥} ⊆ γ♯(0) Hdef. function composition ◦I
⇔ {⊥} ⊆ {⊥} Hdef. γ♯, which is true, proving (2)I

Let f ∈ ℘(D⊥)
1∪−→ ℘(D⊥), f ♯ ∈ B i−→ B be such that f ≤ #–γ ♯(f ♯). Then

11 We have not used the Galois connection hypothesis which is useful to rephrase the
hypotheses using α. It is also possible to require equality, see Patrick Cousot, Radhia
Cousot: Galois Connection Based Abstract Interpretations for Strictness Analysis
(Invited Paper). Formal Methods in Programming and Their Applications 1993: 98-
127.

F̂ (f)
.
⊆ F̂ (#–γ ♯(f ♯))

Hf ≤ #–γ ♯(f ♯) and the composition F̂ ♯ of increasing functions is increasingI
.
⊆ #–γ ♯(#–α ♯ ◦ F̂ ◦ #–γ ♯(f ♯))

Hby the Galois connection ⟨ #–α ♯, #–γ ♯⟩, #–γ ♯ ◦ #–α ♯ is extensiveI
= #–γ ♯(F̂ ♯(f ♯)) Hdef. F̂ ♯ ≜ #–α ♯ ◦ F̂ ◦ #–γ ♯, proving hypothesis (3) of proposition 7I

Let ⟨fi, i ∈ N⟩ be an increasing chain for
.

⊑̂ and ⟨f ♯
i , i ∈ N⟩ be an increasing

chain for
.
≤ such that ∀i ∈ N . fi

.
⊆ #–γ ♯(f ♯

i). We have
.⊔̂

i∈N
fi

.
⊆ #–γ ♯(

∨̇

j∈N
f ♯
j)

⇔ ∀X ∈ ℘(D⊥) .
⊔̂

i∈N
fi(X) ⊆ #–γ ♯(

∨̇

j∈N
f ♯
j)(X) Hpointwise def.

.

⊑̂ and
.
≤I

Hproving (4)I
⇔ ∀X ∈ ℘(D⊥) .

⊔̂

i∈N
fi(X) ⊆ γ♯ ◦ (

∨̇

j∈N
f ♯
j) ◦ α♯(X) Hdef. #–γ ♯(f) ≜ γ♯ ◦ f ◦ α♯I

⇔ ∀X ∈ ℘(D⊥) .
⊔̂

i∈N
fi(X) ⊆ γ♯(

∨

j∈N
f ♯
j (α

♯(X))) Hdef. composition ◦I (6)

Since ⟨f ♯
j , j ∈ N⟩ is

.
≤-increasing, ⟨f ♯

j (α
♯(X)), j ∈ N⟩ is ≤-increasing so is either

a sequence of 0s or a sequence of 0s followed by 1s. There are two cases.

If ⟨f ♯
j (α

♯(X)), j ∈ N⟩ is a sequence of 0s then
∨

j∈N f ♯
j (α

♯(X)) = 0. Moreover
the hypothesis ∀i ∈ N . fi

.
⊆ #–γ ♯(f ♯

i) = γ♯ ◦ f ♯
i

◦ α♯ implies that ∀i ∈ N . fi(X) =

γ♯(f ♯
i (α

♯(X))) = γ♯(0) = {⊥}. Therefore
H(6)I

⇔
⊔̂

i∈N
fi(X) ⊆ γ♯(0) Hcase ⟨f ♯

j (α
♯(X)), j ∈ N⟩ = ⟨0, j ∈ N⟩I

⇔
⊔̂

i∈N
{⊥} ⊆ {⊥} Hdef. γ♯(b) = L b = 0 ¿ {⊥} : D⊥ MI

⇔ {⊥} ⊆ {⊥}
Hby def. of the least upper bound

⊔̂
for ⊑̂, proving (4) in this first caseI

Otherwise ⟨f ♯
j (α

♯(X)), j ∈ N⟩ is a sequence of 0s followed by 1s so
∨

j∈N f ♯
j (α

♯(X))

= 1 in (6) and therefore
⊔̂
i∈N

fi(X) ⊆ γ♯(1) = D⊥ since
⊔̂
i∈N

fi(X) ∈ ℘(D⊥) by

def. of the lub in the poset ⟨℘(D⊥), ⊑̂⟩. Again (4) holds in this second case.

Sustainable software development:
new challenges for programming, languages design and analysis

(Preliminary version)

Bent Thomsen1, Lone Leth Thomsen1, and Thomas Bøgholm1

Aalborg University, Aalborg, Denmark
{bt, lone, boegholm}@cs.aau.dk

Abstract. Energy consumption and the associated CO2 footprint of In-
formation and Communication Technology (ICT) has become a major
concern. Some estimates suggest that 4-6% of global energy consump-
tion in 2020 was spent on ICT and, although the ICT industry is very
good at using green energy, CO2 emissions from ICT are at par with
CO2 emissions from aviation. Pessimistic forecasts suggest that energy
consumption from ICT may rise to 20% in 2030.
Clearly software does not emit CO2, but software is executed on hard-
ware, and hardware consumes energy when executing software. In re-
cent years there has been a huge effort in understanding the relationship
between software and energy consumption of the underlying hardware.
There is now evidence that the structure of the software, the program
constructs used in the software and even the programming languages
and compilers used for developing the software influence the energy con-
sumption when the software is executed. There is a huge global effort
on raising awareness of sustainable software development and there is a
growing body of knowledge of many aspects.
However, the literature on how programming language design and analy-
sis can impact energy consumption of the underlying hardware is sparse.
In a seminal presentation at SAS’2007 Alan gave an overview of the
changes going on in hardware and outlined his view on the implications of
this on programming language design and analysis research. In this paper
we follow in Alan’s footsteps and outline our view on the implications
of energy consumption on programming language design and analysis
research.

1 Introduction

TheWorld Economic Forum estimates that digital technologies can reduce global
CO2 emissions by 15% in sectors such as energy, manufacturing, agriculture,
construction and transport [1, 10]. Despite the fact that ICT often is able to
exploit green energy, CO2 emissions from ICT are at par with CO2 emissions
from aviation. Some pessimistic forecasts suggest that ICT in 2030 may consume
as much as 20% of the global energy production [14].

Developers of ICT systems have a strong desire to help reduce global CO2
emissions in general and from ICT systems in particular. Tremendous advances

2 Thomsen et al.

in hardware technology have to a large extent kept a lid on an explosion of energy
consumption from ICT despite a rise in demand for computations. Considering
the bleak forecast in [14] it seems that the energy consumption from the worlds
data centers has been kept at around 2% despite at six fold rise in throughput
since 2010.

The impressive achievements of hardware engineers have, however, not been
matched by software engineers, who to a large degree, are unaware of the oppor-
tunities and possibilities that they have regarding reducing energy consumption
caused by ICT. Software engineers are not entirely to blame for this situation
as they have been shielded from the development in hardware that still, as Alan
pointed out in his SAS’07 talk, tries to give the software engineers the illusion
that hardware operates according to a computational model aligned more or
less with the i486 from 1985. Even when software engineers understand that
hardware has changed dramatically they often lack the tools to help them even
address the issue [18].

From a research perspective, there has been a huge effort in understanding
the relationship between software and energy consumption of the underlying
hardware. There is now evidence that the structure of the software, program
constructs used in the software and even the programming language and compiler
used for developing the software influence the energy consumption when the
software is executed. There are various tools able to identify energy hungry
program patterns and replace these with less energy demanding patterns. There
are also recommendations that software engineers integrate an energy testing
practice into their software development process to identify energy hotspots as
early as possible.

In this paper we will follow in Alan’s footsteps and first outline changes
in technology, then discuss programming implications (for programmers and for
languages) and finally outline opportunities for static analysis and type systems,
before listing our conclusions.

2 Changes in technology

As Alan explained in his SAS’07 talk [20], hardware has been on a tremendous
journey from the invention of the integrated circuit in 1958 where a few transis-
tors could be placed together to a situation today in 2023 where over 100 billion
transistors can be fitted on a chip. Early CPU’s had a few thousand transistors,
e.g. in 1971 the Intel 4004 chip had 2300 transistors, in 2007 the Intel Itanium 2
dual core processors had more than 1.7 billion transistors, and in 2023 the Intel
Core i9-11900K has 17 billion transistors and the Apple M1 Ultra has 114 billion
transistors. The development has followed Moore’s law: doubling the number of
transistors per unit area in an integrated circuit every 18 months (or every two
years), although a slight slowdown seems to have materialized in recent years
since we have not quite reached the 256 billion transistors on a chip that Alan
predicted!

Sustainable software development 3

The huge number of available transistors has implications for the architecture
of CPUs. In the early years, the seventies to mid-eighties, more and more complex
CPUs with more and more advanced instructions were constructed, however
in the late seventies and early eighties the x86 instruction set emerged as a
dominant player in the PC market. With shrinking feature size it was possible to
increase clock speed and thus speed up execution time, leading to the misquoted
version of Moore’s law that processor speed doubles every 18 months.

Although feature size has gone down uniformly, the speed of circuits has not
developed uniformly. In the early years there was a 1-1 relationship between
execution of instructions on the CPU and memory access to RAM. However,
from the mid-eighties this correspondence started to drift with RAM becoming
relatively slower and slower. A large part of the increased number of transistors
was in the period from 1985 to 2005 used to hide this fact by introducing on-
chip caches, pipelines and super scalar processing, thus hiding the fact that the
relative speed between CPU and RAM by 2005 was a factor 1-200. With the
shrinking feature size comes an additional challenge, namely that accessing on
chip memory is also getting slower as a round trip on a chip may take as much as
75 clock cycles. Therefore several layers of caches, referred to as L1, L2, L3 etc.,
were introduced - this means that a large part of the chip is used for memory.

One problem with the shrinking feature size is that the heat produced as
a consequence of switching circuits gets concentrated on a smaller and smaller
area. This puts a limit on how much the clock speed can be raised and as a
consequence clock speeds since 2005 have been kept relatively stable around 2.5-
3.5 GHz. Instead of a faster single core CPU a development towards multi-core
architectures, starting with dual core CPUs in commercial use from 2005 onward,
has been pursued. Extrapolating based on Moore’s law we should by now have
chips with more than a thousand cores and indeed there are experimental 1000
core CPUs and even commercial CPUs like the Arm-based CPU ”Ampere Altra
/ Altra Max” with up to 256 cores.

However, mainstream computing has stopped at 4 to 12 cores on consumer
platforms, with a few high-end server processors with 40 or more cores. Instead
of adding more cores the focus has been on integrating the GPU and providing
cores with different energy consumption characteristics.

Koomey’s law, which states that the number of computations per joule of
energy dissipated doubles about every 1.57 years, indicates that hardware is
getting more energy efficient in general. However, this is a very broad trend with
huge variations.

Already before the turn of the millennium it had become clear that the
increase in processor speed comes with a higher energy cost. As reported in
[12] the reason for the increase in power is that the design techniques used
in the desktop microprocessors tended to result in much more energy being
expended per instruction due to the higher capacitance toggled to process each
instruction. [12] reports that the Pentium Pro processor was 1.8 times faster
than the Pentium processor but consumed 3.3 times the power. The increase in

4 Thomsen et al.

speed was entirely a result of the deeper pipeline on the Pentium Pro processor
since the process technology was the same for both.

[12] compares energy per instruction (EPI) for a number of intel processors;
i486, Pentium, Pentium Pro, two Pentium 4 variants (Willamette, Cedarmill),
Pentium M and Core Duo (benchmarked using a single core). Although these
processors are manufactured using different feature sizes, have different clock
frequencies and different voltage, normalized to the i486 the EPI reported in nJ
are: 10, 14, 24, 38, 48, 15 and 11. The energy efficiency of the mobile proces-
sors, Pentium M and the Core Duo, is a result of more modest pipeline depths,
moderately-sized out-of-order structures, aggressive clock gating, and micro-op
fusion. The Pentium M and Core Duo processors deliver higher performance by
performing more useful work in each clock cycle. Similarly in 2020 AMD re-
ported that, since 2014, the company has managed to improve the efficiency of
its mobile processors by a factor of 31.7. Thus with the advent of mobile com-
puting came a new focus on energy efficiency, which later proliferated to desktop
and server hardware.

A simple way of saving energy is to reduce the voltage supplied to the CPU
and as higher frequencies require higher voltage the concept of dynamic voltage
and frequency scaling (DVFS) has been introduced, sometimes referred to as
overvolting and undervolting or turbo boosting. With these techniques the CPU
energy consumption, and heating, can be controlled to some extent from software
by throttling down when e.g. conservation of battery is important or boosting
when high demand jobs are executing.

With the advent of multicore architectures another power saving method has
been introduced, where some cores are “turn off” or at least put into reduced
power state when not needed. Power management states, P-states and C-states
are mechanisms used in modern processors to control and optimize power con-
sumption. P-states are also known as performance states. These are different
operating states or frequency/voltage pairs that a processor can switch between
to balance performance and power consumption. At higher P-states, the proces-
sor runs at higher clock frequencies and voltages, providing better performance
but consuming more power. Lower P-states involve lower clock frequencies and
voltages, reducing power consumption at the cost of lower processing perfor-
mance. The operating system and the processor work together to adjust the
processor’s P-state dynamically based on the current workload. This allows the
system to save power during periods of low activity and ramp up performance
when needed. C-states are idle or sleep states that a processor enters when there
is little to no computational load. These states help reduce power consumption
when the CPU is not actively processing tasks. Each C-state corresponds to a
different level of idle activity, with higher-numbered C-states indicating deeper
levels of sleep and lower power usage. When a processor enters a C-state, it effec-
tively powers down parts of its core or cores to minimize power usage. This can
involve halting the clock or even turning off parts of the processor until activity
resumes. As soon as the processor detects activity, it exits the C-state and re-
turns to an active state to resume processing tasks. The combination of P-states

Sustainable software development 5

and C-states allows modern processors to adapt their power usage in real-time
to match the system’s workload, optimizing power efficiency while still provid-
ing adequate performance when required. This is crucial for laptops and mobile
devices to extend battery life and for data centers to reduce energy consumption
while maintaining responsiveness.

Another power saving approach was introduced in 2023 with Intel’s new Alder
Lake chips which come with two sets of CPU cores: P-cores and E-cores. P cores
are designed for high-performance tasks. They typically have a higher clock speed
and are optimized for single-threaded performance, making them well-suited for
tasks that do not benefit from multiple cores. P cores use a more advanced
process node and often have a higher power consumption compared to E cores.
E cores are designed for power efficiency and less demanding tasks. They have
a lower power consumption and are optimized for tasks that can benefit from
multi-threading. E cores are typically used for background tasks, lightweight
applications, and power-saving scenarios to extend battery life in laptops or
reduce power consumption in desktops. Alder Lake processors use a combination
of P and E cores to achieve a balance between high performance and power
efficiency. This architecture is sometimes referred to as a ”big.LITTLE” design,
with P cores acting as the ”big” high-performance cores and E cores serving
as the ”LITTLE” power-efficient cores. The operating system and software are
responsible for scheduling tasks to run on the appropriate core based on their
resource requirements.

Although P and and E cores in consumer PCs are mainly used for running
different applications with different execution speed needs, it also makes sense
to have different sized processors in a many-core architecture to improve parallel
speedup by reducing the time it takes to run the less parallel code. As described
in [2] an implication of Amdahl’s law is that the less parallel portion of a program
can limit performance on a parallel computer. Therefore it makes sense to execute
the inherent sequential code of an application on a faster processor with larger
caches, a bigger multiplier, deeper pipelines, even if this also implies more power
consumption. [2] presents the following argument:

”For example, assume 10% of the time a program gets no speedup on a 100-
processor computer. Suppose to run the sequential code twice as fast, a single
processor would need 10 times as many resources as a simple core, the compara-
tive speedups of a homogeneous 100 simple processor design and a heterogeneous
91 processor design relative to a single simple processor are: Speedup Homoge-
neous = 1 / (0.1 – 0.9/100) = 9.2 times faster. Speedup Heterogeneous = 1
/ (0.1/2 – 0.9/90) = 16.7 times faster. In this example, even if a single larger
processor needed 10 times as many resources to run twice as fast, it would be
much more valuable than 10 smaller processors it replaces.”

Some modern processors facilitate simultaneous multi-threading (SMT), called
hyper threading on Intel processors. SMT allows a single physical processor core
to simulate two or more logical cores. If a core encounters a stall or waits for
data, it can switch to another thread that is ready to execute, thereby reducing
idle time and improving overall CPU utilization.

6 Thomsen et al.

Another parallelisation strategy is Single Instruction, Multiple Data (SIMD),
sometimes refered to as vector operations or Streaming SIMD Extensions (SSE)
instructions. SSE was first introduced with the Intel Pentium II processor, but
they are now found on all modern x86 processors, and are the default floating
point interface in 64-bit mode.

To make use of SIMD instructions, software developers often rely on compilers
to automatically vectorize their code. The compiler identifies opportunities to
apply SIMD instructions and generates the appropriate machine code to take
advantage of parallelism. Proper data alignment is crucial when using SIMD
instructions. Data elements in SIMD vectors must be aligned to fit the specified
width of the SIMD registers. Misaligned data can result in performance penalties.

SIMD instruction were partially introduced to support game programming.
Another trend coming from game programming is the General-Purpose Graph-
ics Processing Unit (GPGPU) using the graphics processing units (GPUs) for
computational tasks beyond traditional graphics rendering. While GPUs were
originally developed to handle graphics-related calculations (such as rendering
images, videos, and 3D graphics), their highly parallel architecture has proven
valuable for a wide range of general-purpose computational tasks. Modern GPUs
are highly parallel processors with hundreds or thousands of cores compared
to the relatively fewer cores in CPUs. GPUs are optimized for handling large
amounts of data and performing computations on this data quickly due to their
high memory bandwidth and parallel processing capabilities. For certain work-
loads, GPGPUs can be more energy-efficient than CPUs, as they can perform
a large number of computations in parallel, potentially saving time and power.
Moving data to the GPU can take significant time, but co-locating the GPU and
the CPU can significantly reduce this time.

With modern multi-core processors determining the EPI is more difficult.
[26] presents an instruction-level energy model for the Intel Xeon Phi processor,
identifying how energy per instruction scales with the number of cores, the num-
ber of active threads per core, and instruction types and modes of data operand
access. Compared to [12] it is now clear that instructions have different energy
costs. For example [26] reports that scalar operations with operands in registers
cost 0.45 nJ, whereas scalar operations on data in L1, L2 or in memory costs;
0.88 nJ, 7.72 nJ, 52.14 nJ (with prefetch) and 232.62 nJ (without prefetch). For
vector instructions the EPI with register operands is 1.00 nJ while the EPI of
moving data from memory to the ALU without prefetching is 233.17 nJ.

3 Programming Implications (for Programmers and for
Languages)

In his SAS’07 talk Alan identified several implications of the change in hardware
for programmers and programming languages. First and foremost he identified
that the programmers view of memory and computations being in a 1-1 relation-
ship was no longer accurate. Therefore programmers should write code that as
far as possible uses local data or consider re-computing as ”Wires are no longer

Sustainable software development 7

free, and local re-computation is far better than sharing computation with a
distant place”.

The implication of this is that the programming model underpinning im-
perative programming languages like C is no longer accurate and Alan calls for
research on programming languages to support non-uniform memory and designs
which de-emphasise shared RAM and serialised access.

Alan suggested that ”Pointers (should be) considered harmful”, at least unre-
stricted pointers as known from C, Java or ML, because pointer copying is more
expensive than integer copying and because pointer copying create aliasing. Alan
also suggested that OO-languages (C++ and Java) should be ”considered harm-
ful”. He highlights the problem with various parameter mechanisms, by value
and by reference, whereby the programmer at an early stage of development
is forced to freeze constraints about whether a function shares a data address
space with its caller. Another concern with OO is that proper OO design fosters
a memory layout of data where it is very difficult to achieve locality - just think
of how many pointers have to be followed to random places in memory when
traversing an AST in a compiler designed following best OO practice.

Clearly functional languages are safe(r) because the compiler can choose to
copy or alias data in pure functional languages. But ML has references that
cannot be copied and Haskell’s laziness may imply that coping becomes rework!
Even pure data poses the question of when to distribute and when not?

If we look at what happened in programming language evolution since 2007,
functional languages, especially Haskell, but also ML (especially the O’caml vari-
ant) had a surge in popularity, in particular in the FinTech industry. However,
these languages are still not in widespread use. Instead the major OO languages
(C++, C# and Java) were extended with first class functions, also known as
lambdas, albeit with various restrictions. The introduction of lambdas exposed
mainstream programmers to functional programming concepts such as higher
order function and immutable data. A new breed of functional OO languages,
like Scala, F#, Kotlin and Swift, have also emerged. However, none of these lan-
guages have eliminated the ”pointer” problem, although they encourage a value
oriented functional programming style. In particular Scala has been popular in
Big Data analytics due to its adoption in Spark/Hadoop, which is based on the
map/reduce functional idiom.

Clearly multi-core chips brings the possibility of parallel programming into
mainstream. However, as Alan predicted, the new model (in 2007) of shared
memory multi-core computing would scale to 2, 4 and maybe 8 cores, but ques-
tioned that it would scale to 1024, simply because shared memory would become
a bottleneck and with shared memory comes the need for locking mechanisms,
and as Alan said ”Locks considered harmful” and needs to be discouraged along
with programming mechanisms which stress it without user awareness. E.g. syn-
chronized objects in Java.

Around 2010 the idea of software transactional memomry (STM) became a
hot topic and it was seen as a solution to the problem of getting mainstream
programmers to deal with parallel execution and locking on shared memory ar-

8 Thomsen et al.

chitectures. Languages like Haskell and Scala were extended with STM libraries
and the emergence of the Closure language, a LISP variant, designed around
STM. However, it turns out that programmers find STM just as difficult as
locking. It also turns out that STM performance degrades with the number of
cores, as the likelihood of conflicting transactions raises with the number of truly
parallel tasks executing.

Instead of a shared memory parallel programming model, Alan suggests a
move to a message-passing programming model, as the Actor model has disjoint
memory spaces per process. He reminds us of the Needham-Lauer “Duality of
operating structures” which showed that shared memory and message-passing
are duals and observes that message passing and shared memory are directly
equivalent with linear uses of buffers.

Alan mentions the Occam language which has a message passing model based
on the CSP calculus. The Occam programming model was designed to be very
close to the system architecture of the Transputer. In recent years the Erlang
language, based on the Actor model, has risen in popularity, in part due to its
use in the popular WattsApp, and also the GO system programming language
from Google has a message passing model based on CSP.

In 2004 [4] Microsoft Research presented Polyphonic C# with synchronous
and asynchronous methods, based on ideas from the join-calculus. A restricted
version of asynchronous methods from polyphonic C# was adopted in the C#
language in the form of async/await constructs leading to a concurrent pro-
gramming style based on futures and promises. This programming style is now
in widespread use in many modern programming languages, replacing the need
for explicit programming with threads and locks.

The rise of the GPGPU led to a flurry of extensions and libraries in high
level languages, like Scala, but these extensions were not widely adopted. Instead
the proprietary language CUDA from NVIDIA and the OpenMP API came to
dominate GPGPU programming. The rise of AI is to a large extent powered by
GPGPU, but the programming is mainly reserved for specialist programmers
writing powerful libraries in C/C++ and CUDA/OpenMP with such libraries
being accessed by mainstream programmers through the use of Python libraries
such as TesorFlow, NumPy and SciPy.

So we are still lacking a programming model and programming languages
supporting such a model that align better with modern hardware architectures.

Equally challenging, or perhaps closely related, is the lack of programming
and programming language support for programmers wishing to write software
that minimizes energy consumption by the underlying hardware (but still achieve
needed functional and performance goals).

There is a growing number of studies of program structures, program pat-
terns, program constructs and even the programming language and compiler
used for developing the software showing how these subjects influence the en-
ergy consumption when the software is executed. The majority of these studies
are experimental measuring energy consumption of computers while running
benchmarks illuminating a given subject. There are basically two ways of mea-

Sustainable software development 9

suring energy consumption from running software, either by an external device,
often referred to as a wall-plug measurements, or through on chip sensors us-
ing the Running Average Power Limit (RAPL) interfaces, supported on Intel
processors, for reporting the accumulated energy consumption of various power
domains (for example, PP01 or Package). Wall-plug measurements are usually
sampled once every second, whereas RAPL updates the energy counters approx-
imately once every millisecond. Studies show that wall-plug measurements and
RAPL measurements are well aligned [15].

An example of such as study is [16] which for Java code shows (not surpris-
ingly) that primitive data types are more energy-efficient than wrapper classes,
static variables (somewhat surprisingly) causing a 50% increase in energy con-
sumption compared to local variables, static variables causing 60% increase in
execution time compared to local variables. The study also shows that short
circuit operators have better energy efficiency if the first case is the most com-
mon one, string concatenation being more energy efficient than StringBuilder
and StringBuffer append methods, method calls in statements like for loops do
not always have increased overhead, try-catch blocks have no cost if no excep-
tions are thrown. Another study, [7], showed that inheritance proved to be more
energy efficient than delegation, with a reduction in run time of 77% and a re-
duction in average power consumption of 4%. [25] presents at tool to analyse
Java collections and replace collections by others with a positive impact on the
energy consumption as well as on the execution time. Using jStanley [25] shows
energy gains between 2% and 17%, and a reduction in execution time between
2% and 13%.

There are similar studies for constructs in C++, C# and Haskell. There
are studies that compare various compilers and compiler options, studies com-
paring various implementations of the JVM and studies comparing concurrency
constructs.

Studies show that it can be of great importance in which programming lan-
guage code is written, i.e. the same logic, with the same workload, can be more
or less power-intensive [8, 24]. Overall, these studies show that code written in
C is the most energy efficient, that code in Java is approximately 2 times and
code written in C# is more than 3 times more power intensive than C. Code
written in Ruby is 45 times more power intensive than C. At the same time,
some of these studies show that there is not always a correlation between speed
and power consumption, i.e. sometimes fast code is more power consuming than
slow code. The results reported in [8, 24] have been used to argue that in the
future all code should be written in the RUST programming language [19] and
that code written in Python “is Destroying the Planet” [3]. Before drawing such
dire conclusions one should consider that the benchmarks used in [8, 24] are all
rather small, micro benchmark like, and often well suited for compiled C-like
languages.

The majority of studies are not looking into the causes of their results. One
notable exception is [26] which show that on Linpack, across different input sizes,

10 Thomsen et al.

around 10% of the energy is spent on redundant software prefetch operations that
fetch data already in the target cache.

All in all the current state of sustainable software development is character-
ized by a growing number of experiments illuminating various aspects of pro-
gramming and programming languages suggesting that programmers should be
careful in their programming practice and integrate energy consumption testing
in the continuous integration practice.

There are few, if any, suggestions to align programming practice or program-
ming languages more closely to the hardware.

One possible exception is the emerging new programming paradigm: data
oriented programming (DOP), which is an approach to software development
that prioritizes the efficient organization and manipulation of data to improve
performance and scalability [27]. It focuses on structuring and processing data
in a way that maximizes system throughput and minimizes memory access bot-
tlenecks. DOP emphasizes designing software around how data is accessed and
manipulated rather than focusing solely on object-oriented or procedural pro-
gramming paradigms. It aims to optimize data layout and processing to improve
performance. In DOP specialized data structures and layouts that enhance mem-
ory access patterns, minimize cache misses, and facilitate efficient processing of
large volumes of data, are used. Often parallel processing capabilities (multi-
threading) and Single Instruction, Multiple Data (SIMD) operations are used to
leverage the full potential of modern hardware architectures. DOP is commonly
associated with game development due to the need for real-time performance.
However, its principles are also applicable to various high-performance comput-
ing scenarios, such as scientific simulations, data processing, and more.

4 Opportunities for Static Analysis and Type Systems

Although Alan in his SAS’07 talk mainly focused on programming language
design and type systems, there may be some interesting work to be done on pro-
gramming analysis for energy efficiency. Most compiler optimizations are tar-
geting speed-up and clearly there is a correlation between speed and energy
consumption. However, as shown in [26], there may be up to 10% energy savings
by removing prefetch instructions inserted to gain speed. Also, as Alan pointed
out, it may be cheaper to recompute some expression rather that fetch their
results from RAM, thus eliminating the need for the common sub-expression
elimination optimization found in many compilers. [24] shows that often the
most energy efficient implementation is not the fastest implementation. Hence
there is a need for tools that can help find the best compromise between speed
and energy.

In general there is a lack of tools to (statically) analyse programs in high level
languages regarding their potential energy consumption. A few tools are based on
linter principles, identifying syntactic patterns and suggesting replacements. [22]
shows that recommendations for exchange of Java collections are very hardware

Sustainable software development 11

dependent. Another study shows that sometimes two energy optimizations may
counteract each other and therefore lead to higher energy consumption [9].

In his SAS’07 talk Alan presented ideas for “Structured programming for
pointers”. His idea of introducing a call-by-either-value-or-reference parameter
mechanism and checking if a function can tell the difference is essentially linear or
quasi-linear types. He also suggest that ownership types from the OO community
may be useful. He suggested that pointers are extended to know which memory
region they apply to, essentially regions as introduced by Tofte and Talpin [30].
However, Alan also questioned whether such mechanisms will be lightweight
enough for ordinary programmers.

An attempt to introduce regions in a C like language was presented in the
Cyclone language [13]. Unfortunately, the development of Cyclone has been dis-
continued. The idea of ownership types has to some extend been introduced in
the RUST programming language with its focus on reference lifetimes and bor-
rowing. Quasi-linear types have been applied in attempts to formalize the RUST
type system [23]. It seems that (some) programmers actually find these types
understandable enough.

[6] introduces a type system for energy management based on the observation
that energy management is often based on discrete phases and modes. A phase
characterizes a distinct pattern of program workload, and a mode represents
an energy state the program is expected to execute in. This is akin to modes
in real-time systems [28] which has been used to handle energy management
programmatically in the Safety Critical Java profile allowing the program to
manage DFVS [17]. To take the dynamic behaviour of the program including
parallel tasks into account, it may be worth revisiting [21, 29] which extend
region types with processes describing the dynamic communication behaviour of
the underlying CML, respectively Facile, programs. Akin to this work, a huge
body of work on behavioural types exists [11]. We imagine that our joint work
with Alan on schedulability abstractions [5] could be extended to take energy
consumption into account using prised timed-automata. One could even imagine
such energy abstractions be used to inform the OS and hardware in advance so
schedules for e.g. migration of tasks could be planned to minimize heat from a
particular core or movement to a location able to utilize green electricity.

5 Conclusion

The development of processor architectures towards more energy efficient com-
puting is impressive, however, the development has not been matched by de-
velopments in software, although software engineers are keen to play their part
in reducing energy consumption, and thereby CO2 emission, from the global
ICT infrastructure. Huge potentials are being demonstrated by a growing list of
experiments showing examples of how energy consumption can be reduced by
changing the structure of software, e.g. more or less energy demanding program
patterns, by choosing the most energy efficient data structures and algorithms,
by using the most energy efficient program constructs and even by choosing the

12 Thomsen et al.

most energy efficient programming languages and compilers. However, inspired
by Alan’s thoughts there are ample opportunities to make these efforts easier
and more accessible to software engineers by designing new programming lan-
guages to better reflect new hardware, new type systems and new programming
analysis taking the complex hardware infrastructure more into account. Clearly
it would also be interesting to see innovative hardware ways to use all the extra
transistors to make programming closer to the hardware easier for software de-
velopers. We may, just as Alan did in his SAS’07 talk, conclude that “what is
a computer” is now changing quite quickly and this gives opportunities for new
research areas.

References

1. kommisionen 4.0, S.: Digitalisering af klimakampen, https://ida.dk/om-ida/siri-
kommissionen/digitalisering-af-klimakampen

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of
parallel computing research: A view from berkeley (2006)

3. Ayar, M.: Python is destroying the planet,
https://levelup.gitconnected.com/python-is-destroying-the-planet-951e83f22748

4. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for c#.
ACM Transactions on Programming Languages and Systems (TOPLAS) 26(5),
769–804 (2004)

5. Bogholm, T., Thomsen, B., Larsen, K.G., Mycroft, A.: Schedulability analysis ab-
stractions for safety critical java. In: 2012 IEEE 15th International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing. pp.
71–78. IEEE (2012)

6. Cohen, M., Zhu, H.S., Senem, E.E., Liu, Y.D.: Energy types. In: Proceedings of the
ACM international conference on Object oriented programming systems languages
and applications. pp. 831–850 (2012)

7. Connolly Bree, D., Cinnéide, M.Ó.: Inheritance versus delegation: which is more
energy efficient? In: Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops. pp. 323–329 (2020)

8. Couto, M., Pereira, R., Ribeiro, F., Rua, R., Saraiva, J.: Towards a green ranking
for programming languages. In: Proceedings of the 21st Brazilian Symposium on
Programming Languages. pp. 1–8 (2017)

9. Couto, M., Saraiva, J., Fernandes, J.P.: Energy refactorings for android in the
large and in the wild. In: 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). pp. 217–228. IEEE (2020)

10. Forum, W.E.: Digital technology can cut global emissions by 15
11. Gay, S., Vasconcelos, V.T., Wadler, P., Yoshida, N.: Theory and applications of

behavioural types (dagstuhl seminar 17051). In: Dagstuhl Reports. vol. 7. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

12. Grochowski, E., Annavaram, M.: Energy per instruction trends in intel micropro-
cessors. Technology@ Intel Magazine 4(3), 1–8 (2006)

13. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation. pp. 282–
293 (2002)

Sustainable software development 13

14. Jones, N., et al.: How to stop data centres from gobbling up the world’s electricity.
Nature 561(7722), 163–166 (2018)

15. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: Rapl in action: Experi-
ences in using rapl for power measurements. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS) 3(2), 1–26 (2018)

16. Kumar, M., Li, Y., Shi, W.: Energy consumption in java: An early experience. In:
2017 Eighth International Green and Sustainable Computing Conference (IGSC).
pp. 1–8. IEEE (2017)

17. Luckow, K.S., Bøgholm, T., Thomsen, B.: Supporting development of energy-
optimised java real-time systems using tetasarts (2013)

18. Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock,
L., Clause, J.: An empirical study of practitioners’ perspectives on green software
engineering. In: Proceedings of the 38th international conference on software engi-
neering. pp. 237–248 (2016)

19. Miller, S., Lerche, C.: Sustainability with rust,
https://aws.amazon.com/cn/blogs/opensource/sustainability-with-rust/

20. Mycroft, A.: Programming language design and analysis motivated by hardware
evolution: (invited presentation). In: International Static Analysis Symposium. pp.
18–33. Springer (2007)

21. Nielson, F., Nielson, H.R.: From cml to process algebras. In: International Confer-
ence on Concurrency Theory. pp. 493–508. Springer (1993)

22. Oliveira, W., Oliveira, R., Castor, F., Pinto, G., Fernandes, J.P.: Improving energy-
efficiency by recommending java collections. Empirical Software Engineering 26,
1–45 (2021)

23. Pearce, D.J.: A lightweight formalism for reference lifetimes and borrowing in rust.
ACM Transactions on Programming Languages and Systems (TOPLAS) 43(1), 1–
73 (2021)

24. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva,
J.: Ranking programming languages by energy efficiency. Science of Computer
Programming 205, 102609 (2021)

25. Pereira, R., Simão, P., Cunha, J., Saraiva, J.: jstanley: Placing a green thumb on
java collections. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. pp. 856–859 (2018)

26. Shao, Y.S., Brooks, D.: Energy characterization and instruction-level energy model
of intel’s xeon phi processor. In: International Symposium on Low Power Electron-
ics and Design (ISLPED). pp. 389–394. IEEE (2013)

27. Sharvit, Y.: Data-oriented Programming: Reduce Software Complexity. Simon and
Schuster (2022)

28. Søndergaard, H., Ravn, A.P., Thomsen, B., Scoeberl, M.: A practical approach to
mode change in real-time systems. Tech. rep., Technical Report 08-001, Depart-
ment of Computer Science, Aalborg University (2008)

29. Thomsen, B.: Polymorphic sorts and types for concurrent functional programs.
Techn. Rep. ECRC-93-10 (1993)

30. Tofte, M., Talpin, J.P.: Region-based memory management. Information and com-
putation 132(2), 109–176 (1997)

Air quality big data analytics using low-cost
sensors

Eleftheria Katsiri

Department of Electrical and Computer Engineering, Democritus University of
Thrace, Xanthi 67100, Greece,

ekatsiri@gmail.com

Abstract. Air pollution is the fourth most important risk of death fac-
tor in the world with a proven burden of disease that includes billions of
deaths and thousands of DALYS [1–4]. Furthermore, 4000 industries and
3000 diagnostic labs, in Greece only, are required by law to monitor air
quality. Recently, both the covid-19 pandemic and climate change are
changing current legislation worldwide, introducing a need to monitor
more closely air quality.
On the other hand, the emergence of the low-cost sensor technology has
changed the pollution monitoring paradigm [8–15], by enabling the mon-
itoring of pollutants close to the source, with high temporal and spatial
granularity. These features makes it possible to answer new questions
about the underlying causes of poor air quality, ensure more accurate
modelling and prediction at local scales [6, 16], improve the ability to
identify the links between air quality and human health [5, 17, 18] or en-
vironmental degradation [19], identify potential air pollution “hot spots”,
enhance the ability to quantify the impacts of pollutant mitigation tech-
niques and promote savings through on-demand ventilation [7]. However,
the exploitation of low-cost sensors requires in-depth knowledge of sens-
ing principles, low-noise electronics, calibration in the lab and in he field,
real-time edge processing and device-cloud communication, analytics and
AI.
Our team has been engaged in the development of reliable air quality
sensing devices using low-cost sensors, custom sensor boards, embedded
software and cloud services [40]. The SibaIoT PM device used in this
work measures ambient particulate matter concentrations in ug/m3 of
three classes of particles, namely PM1 .0 ,PM2 .5 and PM10 , humidity
and temperature. The device has very good accuracy, response time and
sensitivity in indoor pollution levels.
With respect to the methodology, we have conducted a pilot application
in a state-of-the art industrial space that is sensitive to infection caused
by particulate matter such as dust. Fifteen PM devices were installed
in three different production areas with varying air quality sensitivity.
Indicative visual analytics are presented in the paper such as descriptive
analytics, histograms, density, delay and line plots, as well as outcomes
from the application of analytic functions such as pearson correlation,
k-means clustering, classification and aggregated exposure to pollution
on the sensor data. More specifically, both Production-Area analytics,i.e.
analysis of multiple time-series generated by multiple devices deployed

at a specific production area and Intra-Area analytics, i.e., analysis of
multiple time-series generated by multiple devices deployed at logically
connected production areas, are discussed. For example, we have calcu-
lated annual max, min, average values per day-of-the-week, shift, day of
the month, hour-of-the-day, poor, good and fair quality clusters,

Preliminary results show that the above analytics are promising in pro-
viding useful insights on the both the level of pollution and the intensity
of industrial activity in the dairy. For example we have found that air
quality is aggravated indoors during weekdays, that annual average par-
ticulate matter concentration follows humidity and temperature with a
fixed lag.

Keywords: low-cost sensors, air quality monitoring, internet of things,
wireless sensor networks, delay tolerant networking, middleware, analyt-
ics, python, pattern detection, outliers, visual analytics

References

1. Krzyzanowski, M., Martin, R. V., Van Dingenen, R., van Donkelaar, A., and
Thurston, G. D. (2012) Exposure assessment for estimation of the global burden
of disease attributable to outdoor air pollution. Environ. Sci. Technol., 46, 652-660.

2. WHO- Regional office for Europe, Review of evidence on health aspects of air pol-
lution – REVIHAAP project: final technical report, 2013.

3. Samet J.M., Dominici F., Curriero F.C., Coursac I., Zeger, S.L., Fine Particulate
Air Pollution and Mortality in 20 U.S. Cities, 1987–1994, N Engl J Med , Vol. 343,
2000, pp. 1742-1749

4. WHO- Regional office for Europe, Health effects of particulate matter. Policy im-
plications for countries in eastern Europe, Caucasus and central Asia, 2013.

5. Bano, N., Assessment of indoor environmental impacts on human health (Case
study: Glass city, Firozabad (India), Pollution, Vol. 3, No.2, 2017, pp. 175-183

6. Setton, E., Marshall J. D., Brauer M., Lundquist K. R., Hystad P., Keller P., and
Cloutier-Fisher D., The impact of daily mobility on exposure to traffic-related air
pollution and health effect estimates, Journal of Exposure Science and Environmen-
tal Epidemiology, Vol. 21, No. 1, 2011, pp. 42–48.

7. Kumar, P., Martani, C., Morawska, L., Norford, L., Choudhary, R., Bell, M.,
Leach, M., (2016) Indoor air quality and energy management through real–time
sensing in commercial buildings, Energy and Buildings, (111):145-153, 0378-7788,
https://doi.org/10.1016/j.enbuild.2015.11.037

8. Mahajan, S., and Kumar, P. (2020) Evaluation of low-cost sensors for quantitative
personal exposure monitoring. Sustainable Cities and Society p. 102076

9. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino,
S., et al. (2015) The rise of low-cost sensing for managing air pollution in cities,
Environment International, 75 , pp. 199-205

10. Morawska, L., Thai, P.K., Liu, X., Asumadu-Sakyi, A., Ayoko, G, Bartonova,A., et
al.: Applications of low-cost sensing technologies for air quality monitoring and ex-
posure assessment: How far have they gone? Environment International, 116 (2018),
pp. 286-299, 10.1016/j.envint.2018.04.018 (2018)

2

11. Snyder, E.G., Watkins, T.H., Solomon,P.A., Thoma, E.D., Williams, R.W., Ha-
gler, G.S.W., et al. (2013) Applications of low-cost sensing technologies for air qual-
ity monitoring and exposure assessment: How far have they gone? Environmental
Science & Technology, 47 (2013), pp. 11369-11377

12. Anjomshoaa, A., Duarte, F. , Rennings, D., Matarazzo, T.J., deSouza, P., Ratti,
C., City scanner: Building and scheduling a mobile sensing platform for smart city
services, IEEE Internet of Things Journal, Vol.5, 2018, pp. 4567-4579

13. DeSouza, P., Anjomshoaa, A.,Duarte, F., Kahn, R., Kumar, P., Ratti, C., Air
quality monitoring using mobile low-cost sensors mounted on trash-trucks: Meth-
ods development and lessons learned, Sustainable Cities and Society, Vol.60, 2020,
pp.102239

14. Elen, B., Peters, J., Poppel, M.V., Bleux, N., Theunis, J., Reggente, M., et al. The
aeroflex: A bicycle for mobile air quality measurements. Sensors, Vol.13, 2013, pp.
221-240 (2013)

15. Dutta, P.; Aoki, P.M.; Kumar, N.; Mainwaring, A.; Myers, C.; Willett, W.;
Woodruff, A. (2009) Common sense: Participatory urban sensing using a network of
handheld air quality monitors. In Proceedings of the 7th ACM Conference on Em-
bedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November ACM: New
York, NY, USA, 2009; pp. 349–350.

16. Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. (2012) Participatory air
pollution monitoring using smartphones. Mobile Sensing 1, 1–5

17. deSouza, P., Kahn, A. R., Limbacher, A. J., Marais, A. E., Duarte, F., and Ratti,
C.: Combining low-cost, surface-based aerosol monitors with size-resolved satellite
data for air quality applications. Atmospheric Measurement Techniques 13(10):5319-
5334 DOI: 10.5194/amt-13-5319-2020 (2020)

18. Koukouli, M.E., Skoulidou, I., Karavias, A., Parcharidis, I., Balis, D, Manders-
Groot, A.M.M., Segers, A.J., Eskes, H., van Geffen, J.: Sudden changes in nitrogen
dioxide emissions over Greece due to lockdown after the outbreak of Covid-19.
Atmospheric Chemistry and Physics, 21 (21), 1759-1774 (2020)

19. Postolache, O.A.; Pereira, J.M.D.; Girao, P.M.B.S.: Smart sensors network for air
quality monitoring applications. IEEE Trans. Instrum. Meas., 58, 3253–3262 (2009)

20. Kumar, P., Martani, C., Morawska, L., Norford, L., Choudhary, R., Bell, M., Leach,
M. (2016) Indoor air quality and energy management through real–time sensing in
commercial buildings, Energy and Buildings, (111):145-153, 0378-7788

21. Hagan, D. H., Gani,S., Bhandari, S., Patel, K., Habib, G., Apte, J., Hildebrandt
Ruiz, L., and Kroll, H. J. (2019) Inferring Aerosol Sources from Low-Cost Air Qual-
ity Sensor Measurements: A Case Study in Delhi, India, Environ. Sci. Technol.
Lett.,Vol.6, No.8, pp.467-472

22. Yazdi, M. N., Arhami, N., Delavarrafiee, M., Ketabchy, M. (2019) Developing air
exchange rate models by evaluating vehicle in-cabin air pollutant exposures in a
highway and tunnel setting: case study of Tehran, Iran, Environ Sci Pollut Res Int.,
Vol.26, No.1, pp.501-513

23. Bukowiecki, N., Dommen J., , Prévôt, A.S.H., Richter, R., Weingartner, E. (2002)
and Baltensperger U., A mobile pollutant measurement laboratory—Measuring gas
phase and aerosol ambient concentrations with high spatial and temporal resolution,
Atmospheric Environment, Vol.36, pp. 5569-5579

24. Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden, M.M.
et al. (2017) High-resolution air pollution mapping with google street view cars:
Exploiting big data, Environmental Science & Technology, Vol.51, pp. 6999-7008

3

25. Capezzuto, L.; Abbamonte, L.; De Vito, S.; Massera, E.; Formisano, F.; Fattoruso,
G.; Di Francia, G.; Buonanno, A. A maker friendly mobile and social sensing ap-
proach to urban air quality monitoring. In Proceedings of the 2014 IEEE on SEN-
SORS, Valencia, Spain, ; pp. 12–16.

26. Murty, R.N.; Mainland, G.; Rose, I.; Chowdhury, A.R.; Gosain, A.; Bers, J.; Welsh,
M. Citysense: An urban-scale wireless sensor network and testbed. In Proceedings of
the 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA,
USA, 12–13 May 2008; pp. 583–588

27. Kadri, A.; Yaacoub, E.; Mushtaha, M.; Abu-Dayya, A.(2013) Wireless sensor net-
work for real-time air pollution monitoring. In Proceedings of the 2013 1st Inter-
national Conference on Communications, Signal Processing, and their applications
(ICCSPA), Sharjah, United Arab Emirates, 12–14 February; pp. 1–5.

28. Jiang, Y.; Li, K.; Tian, L.; Piedrahita, R.; Yun, X.; Mansata, O.; Lv, Q.; Dick, R.P.;
Hannigan, M.; Shang, L. (2011) MAQS: A personalized mobile sensing system for
indoor air quality monitoring. In Proceedings of the 13th International Conference
on Ubiquitous Computing, Beijing, China, 17–21 September 2011; ACM: New York,
NY, USA; pp. 271–280.

29. Jelicic, V.; Magno, M.; Brunelli, D.; Paci, G.; Benini, L. (2013) Context-adaptive
multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens.
J. 13, 328–338.

30. Mansour, S.; Nasser, N.; Karim, L.; Ali, A. (2014) Wireless sensor network-based
air quality monitoring system. In Proceedings of the 2014 International Conference
on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp.
545–550.

31. Sun, L.; Wong, K.C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie,
P.K.; Luk, C.W.; Ning, Z.(2016) Development and application of a next generation
air sensor network for the Hong Kong marathon 2015 air quality monitoring. Sensors
16, 211.

32. Honicky, R.; Brewer, E.A.; Paulos, E.; White, R. (2008) N-smarts: Networked
suite of mobile atmospheric real-time sensors. In Proceedings of the Second ACM
SIGCOMM Workshop on Networked Systems for Developing Regions, Seattle, WA,
USA, 18 August 2008; ACM: New York, NY, USA; pp. 25–30

33. Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. (2010)
A survey of mobile phone sensing. IEEE Commun. Mag. 48, pp. 140–150.

34. Helbig, C.; Bauer, H.S.; Rink, K.; Wulfmeyer, V.; Frank, M.; Kolditz, O. (2014)
Concept and workflow for 3D visualization of atmospheric data in a virtual reality
environment for analytical approaches. Environ. Earth Sci. 72, pp. 3767–3780.

35. Setti, L., Passarini, F., de Gennaro, G., Di Gilio, A., Palmisani, J., Buono, P.,
Fornari, G., Perrone, M., G., Piazzalunga, A., Barbieri, P., Rizzo, E. and Miani, A.
(2020) Evaluation of the potential relationship between Particulate Matter (PM)
pollution and COVID-19 infection spread in Italy:first observational study based on
initial epidemic diffusion. BMJ Open ;10

36. Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., Dominici, F. (2020) Air pollution
and COVID-19 mortality in the United States: Strengths and limitations of an
ecological regression analysis. Science Advances Vol. 6, no. 45

37. Saadat, S., Rawtani, D., Hussain, CM. (2020) Environmental perspective of
COVID-19. Sci Total Environ. Aug 1;728

38. Le Quéré, C., Jackson, B.R., Jones, W.M., Smith, P.J.A., Abernethy, S., An-
drew, M.R., De-Gol, J.A., Willis, R.D., Shan, Y., Canadell, G.J., Friedlingstein,
P., Creutzig, F., Peters, P.G. (2020) Temporary reduction in daily global CO2 emis-
sions during the COVID-19 forced confinement. Nat. Clim. Chang. 10, 647–653

4

39. Katsiri E.(2020) Sensor Networks with Edge Intelligence for Reliable Air Quality
Monitoring in the Covid-19 Era. Proceedings of the ICR’22 International Conference
on Innovations in Computing Research, 383-396

40. Katsiri E.(2020) Developing reliable air quality monitoring devices with low cost
sensors: Method and lessons learned. International Journal of Environmental Sci-
ence, 6, 425-444

41. Grafana: The open observability platform. https://grafana.com
42. Fadhel, M., Sekerinski, E., Yao, S. (2019) A Comparison of Time Series Databases

for Storing Water Quality Data. Mobile Technologies and Applications for the In-
ternet of Things, IMCL

43. Buelvas, J., Múnera, D., Tobón V., D.P. et al. (2023) Data Quality in IoT-Based
Air Quality Monitoring Systems: a Systematic Mapping Study. Water Air Soil Pollut
234, 248 .

44. Sharifi R, Langari R. Nonlinear sensor fault diagnosis using mixture of probabilistic
PCA models. Mech Syst Sign Process. 2017;85:638–50.

45. Wang RY, Strong DM. (1996) Beyond accuracy: what data quality means to data
consumers. J Manag Inform Syst.;12(4):5–33.

46. Li Y, Parker LE. (2014) Nearest neighbor imputation using spatial-temporal cor-
relations in wireless sensor networks. Inform Fusion. ;15:64–79.

47. Aggarwal CC. (2013) An introduction to outlier analysis. Outlier analysis.
Springer: New York; p. 1–40.

48. Ahmad NF, Hoang DB, Phung MH. (2009) Robust preprocessing for health care
monitoring framework. In: 2009 11th international conference on e-Health network-
ing, applications and services (Healthcom). pp. 169–74.

49. Anderson, R. L.,(1942) Distribution of the Serial Correlation Coefficient, Annals
of Mathematical Statistics, Volume 13, Number 1 1–13.

50. Bosman HH, Iacca G, Tejada A, Wörtche HJ, Liotta A. (2017) Spatial anomaly de-
tection in sensor networks using neighborhood information. Inform Fusion; 33:41–56.

51. Moursi, A.S., El-Fishawy, N., Djahel, S. et al. An IoT enabled system for enhanced
air quality monitoring and prediction on the edge. Complex Intell. Syst. 7, 2923–2947

52. InfluxDB line protocol reference.
https://docs.influxdata.com/influxdb/v1.8/write protocols/line protocol reference/

53. Glantz, Stanton A.; Slinker, Bryan K.; Neilands, Torsten B. (2016), Primer of
Applied Regression & Analysis of Variance (Third ed.), McGraw Hill

54. Aho, Ken A. (2014), Foundational and Applied Statistics for Biologists (First ed.),
Chapman & Hall / CRC Press

55. Bartlett, M. S. (1946) On the Theoretical Specification and Sampling Properties
of Autocorrelated Time-Series. Supplement to the Journal of the Royal Statistical
Society, vol. 8, no. 1, pp. 27–41. JSTOR, http://www.jstor.org/stable/2983611.

56. Quenouille, M. H. (1949) The Joint Distribution of Serial Correlation Coefficients,
The Annals of Mathematical Statistics, Vol. 20, 4 pp. 561–571

5

Abstract. The trie data structure is a good choice for finite maps whose
keys are data structures (trees) rather than atomic values. But what if
we want the keys to be patterns, each of which matches many lookup
keys? Efficient matching of this kind is well studied in the theorem prover
community, but much less so in the context of statically typed functional
programming. Doing so yields an interesting new viewpoint — and a
practically useful design pattern, with good runtime performance.

Triemaps that match
Technical Report

Simon Peyton Jones1 and Sebastian Graf2

1 Epic Games
2 Karlsruhe Institute of Technology

1 Introduction

Many functional languages provide finite maps either as a built-in data type, or as
a mature, well-optimised library. Generally the keys of such a map will be small:
an integer, a string, or perhaps a pair of integers. But in some applications the
key is large: an entire tree structure. For example, consider the Haskell expression

let x = a+ b in ... (let y = a+ b in x + y)

We might hope that the compiler will recognise the repeated sub-expression
(a+ b) and transform to

let x = a+ b in ... (x + x)

An easy way to do so is to build a finite map that maps the expression (a+ b) to
x . Then, when encountering the inner let, we can look up the right hand side in
the map, and replace y by x . All we need is a finite map keyed by syntax trees.

Traditional finite-map implementations tend to do badly in such applications,
because they are often based on balanced trees, and make the assumption that
comparing two keys is a fast, constant-time operation. That assumption is false
for large, tree-structured keys.

Another time that a compiler may want to look up a tree-structured key
is when rewriting expressions: it wants to see if any rewrite rule matches the
sub-expression in hand, and if so rewrite with the instantiated right-hand side of
the rule. To do this we need a fast way to see if a target expression matches one
of the patterns in a set of (pattern, rhs) pairs. If there is a large number of such
(pattern, rhs) entries to check, we would like to do so faster than checking them
one by one. Several parts of GHC, a Haskell compiler, need matching lookup,
and currently use an inefficient linear algorithm to do so.

In principle it is well known how to build a finite map for a deeply-structured
key: use a trie. The matching task is also well studied but, surprisingly, only in the
automated reasoning community (Section 7.1): they use so-called discrimination
trees. In this paper we apply these ideas in the context of a statically-typed
functional programming language, Haskell. This shift of context is surprisingly
fruitful, and we make the following contributions:

– Following [Hinze(2000a)], we develop a standard pattern for a statically-typed
triemap for an arbitrary algebraic data type (Section 3.2). In contrast, most
of the literature describes untyped tries for a fixed, generic tree type. In
particular:
• Supported by type classes, we can make good use of polymorphism to

build triemaps for polymorphic data types, such as lists (Section 3.6).
• We cover the full range of operations expected for finite maps: not only

insertion and lookup, but alter , union, fold , map and filter (Section 3.2).
• We develop a generic optimisation for singleton maps that compresses
leaf paths. Intriguingly, the resulting triemap transformer can be easily
mixed into arbitrary triemap definitions (Section 3.7).

– We show how to make our triemaps insensitive to α-renamings in keys that
include binding forms (Section 4). Accounting for α-equivalence is not hard,
but it is crucial for the applications in compilers.

– We extend our triemaps to support matching lookups (Section 5). This is an
important step, because the only readily-available alternative is linear lookup.
Our main contribution is to extend the established idea of tries keyed by
arbitrary data types, so that it can handle matching too.

– We present measurements that compare the performance of our triemaps (ig-
noring their matching capability) with traditional finite-map implementations
in Haskell (Section 6).

We discuss related work in Section 7. Our contribution is not so much a clever
new idea as an exposition of some old ideas in a new context. Nevertheless,
we found it surprisingly tricky to develop the “right” abstractions, such as the
TrieMap and Matchable classes, the singleton-and-empty map data type, and the
combinators we use in our instances. These abstractions have been through many
iterations, and we hope that by laying them out here, as a functional pearl, we
may shorten the path for others.

2 The problem we address

Our general task is as follows: implement an efficient finite mapping from keys to
values, in which the key is a tree. Semantically, such a finite map is just a set of
(key,value) pairs; we query the map by looking up a target. For example, the key
might be a data type of syntax trees, defined like this:

type Var = String
data Expr = App Expr Expr | Lam Var Expr | Var Var

Here Var is the type of variables; these can be compared for equality and used as
the key of a finite map. Its definition is not important for this paper, but for the
sake of concreteness, you may wish to imagine it is simply a string: The data type
Expr is capable of representing expressions like (add x y) and (λx. add x y). We
will use this data type throughout the paper, because it has all the features that
occur in real expression data types: free variables like add, represented by a Var

type TF v = Maybe v → Maybe v

data Map k v = . . . -- Keys k, values v
Map.empty ::Map k v
Map.insert :: Ord k ⇒ k → v → Map k v → Map k v
Map.lookup :: Ord k ⇒ k → Map k v → Maybe v
Map.alter :: Ord k ⇒ TF v → k

→ Map k v → Map k v
Map.foldr :: (v → r → r)→ r → Map k v → r
Map.map :: (v → w)→ Map k v → Map k w
Map.unionWith :: Ord k ⇒ (v → v → v)

→ Map k v → Map k v → Map k v
Map.size ::Map k v → Int
Map.compose :: Ord b ⇒ Map b c → Map a b → Map a c

infixr 1 >=> -- Kleisli composition
(>=>) ::Monad m⇒ (a→ m b)→ (b → m c)

→ a→ m c

infixr 1 >>> -- Forward composition
(>>>) :: (a→ b)→ (b → c)→ a→ c

infixr 0 . -- Reverse function application
(.) :: a→ (a→ b)→ b

Fig. 1: API for library functions

node; lambdas which can bind variables (Lam), and occurrences of those bound
variables (Var); and nodes with multiple children (App). A real-world expression
type would have many more constructors, including literals, let-expressions and
suchlike.

2.1 Alpha-renaming

In the context of a compiler, where the keys are expressions or types, the keys
may contain internal binders, such as the binder x in (λx.x). If so, we would
expect insertion and lookup to be insensitive to α-renaming, so we could, for
example, insert with key (λx.x) and look up with key (λy.y), to find the inserted
value.

2.2 Lookup modulo matching

Beyond just the basic finite maps we have described, our practical setting in
GHC demands more: we want to do a lookup that does matching. GHC supports
so-called rewrite rules [Peyton Jones et al.(2001)], which the user can specify in
their source program, like this:

{−# RULES "map/map" ∀f g xs.map f (map g xs)
= map (f ◦ g) xs #−}

This rule asks the compiler to rewrite any target expression that matches the
shape of the left-hand side (LHS) of the rule into the right-hand side (RHS). We
use the term pattern to describe the LHS, and target to describe the expression
we are looking up in the map. The pattern is explicitly quantified over the
pattern variables (here f , g , and xs) that can be bound during the matching
process. In other words, we seek a substitution for the pattern variables that
makes the pattern equal to the target expression. For example, if the program
we are compiling contains the expression map double (map square nums), we
would like to produce a substitution [f 7→ double, g 7→ square, xs 7→ nums] so
that the substituted RHS becomes map (double ◦ square) nums; we would replace
the former expression with the latter in the code under consideration.

Of course, the pattern might itself have bound variables, and we would like
to be insensitive to α-conversion for those. For example:

{−# RULES "map/id" map (λx → x) = λy → y #−}

We want to find a successful match if we see a call map (λy → y), even though
the bound variable has a different name.

Now imagine that we have thousands of such rules. Given a target expression,
we want to consult the rule database to see if any rule matches. One approach
would be to look at the rules one at a time, checking for a match, but that would
be slow if there are many rules. Similarly, GHC’s lookup for type-class instances
and for type-family instances can have thousands of candidates. We would like
to find a matching candidate more efficiently than by linear search.

2.3 Non-solutions

At first sight, our task can be done easily: define a total order on Expr and
use a standard finite map library. Indeed that works, but it is terribly slow. A
finite map is implemented as a binary search tree; at every node of this tree, we
compare the key (an Expr , remember) with the key stored at the node; if it is
smaller, go left; if larger, go right. Each lookup thus must perform a (logarithmic)
number of potentially-full-depth comparisons of two expressions.

Another possibility might be to hash the Expr and use the hash-code as the
lookup key. That would make lookup much faster, but it requires at least two
full traversals of the key for every lookup: one to compute its hash code for every
lookup, and a full equality comparison on a “hit” because hash-codes can collide.

But the killer is this: neither binary search trees nor hashing is compatible
with matching lookup. For our purposes they are non-starters.

What other standard solutions to matching lookup are there, apart from
linear search? The theorem proving and automated reasoning community has
been working with huge sets of rewrite rules, just as we describe, for many years.
They have developed term indexing techniques for the job [Sekar et al.(2001),
Chapter 26], which attack the same problem from a rather different angle, as we
discuss in Section 7.1.

3 Tries

A standard approach to a finite map in which the key has internal structure is to
use a trie3. Generalising tries to handle an arbitrary algebraic data type as the key
is a well established, albeit under-used, idea [Connelly and Morris(1995),Hinze(2000a)].
We review these ideas in this section. Let us consider a simplified form of expres-
sion:

data Expr = Var Var | App Expr Expr

We omit lambdas for now, so that all Var nodes represent free variables, which
are treated as constants. We will return to lambdas in Section 4.

3.1 The interface of a finite map

Building on the design of widely used functions in Haskell (see Fig. 1), we seek
these basic operations:

emptyEM :: ExprMap v
lkEM :: Expr → ExprMap v → Maybe v
atEM :: Expr → TF v → ExprMap v → ExprMap v

The lookup function lkEM4 has a type that is familiar from every finite map.
The update function atEM, typically called alter in Haskell libraries, changes
the value stored at a particular key. The caller provides a value transformation
function TF v , an abbreviation for Maybe v → Maybe v (see Fig. 1). This
function transforms the existing value associated with the key, if any (hence the
input Maybe), to a new value, if any (hence the output Maybe). We can easily
define insertEM and deleteEM from atEM:

insertEM :: Expr → v → ExprMap v → ExprMap v
insertEM e v = atEM e (_→ Just v)

deleteEM :: Expr → ExprMap v → ExprMap v
deleteEM e = atEM e (_→ Nothing)

You might wonder whether, for the purposes of this paper, we could just define
insert, leaving atEM for the Appendix5, but as we will see in Section 3.3, our
approach using tries requires the generality of atEM.

These fundamental operations on a finite map must obey the following
properties:

lookup e empty ≡ Nothing
lookup e (alter e xt m) ≡ xt (lookup e m)

e1 /= e2 ⇒ lookup e1 (alter e2 xt m) ≡ lookup e1 m

We also support other standard operations on finite maps, with types analo-
gous to those in Fig. 1, including unionEM, mapEM, and foldrEM.
3 https://en.wikipedia.org/wiki/Trie
4 We use short names lkEM and atEM consistently in this paper to reflect the single-
column format.

5 In the supplemental file TrieMap.hs

3.2 Tries: the basic idea

Here is a trie-based implementation for Expr :

data ExprMap v
= EM {em_var ::Map Var v , em_app :: ExprMap (ExprMap v)}

Here Map Var v is any standard finite map (e.g. in containers6) keyed by Var ,
with values v . One way to understand this slightly odd data type is to study its
lookup function:

lkEM :: Expr → ExprMap v → Maybe v
lkEM e (EM {em_var = var , em_app = app}) = case e of
Var x → Map.lookup x var
App e1 e2 → case lkEM e1 app of
Nothing → Nothing
Just m1 → lkEM e2 m1

This function pattern-matches on the target e. The Var alternative says that to
look up a variable occurrence, just look that variable up in the em_var field. But
if the expression is an App e1 e2 node, we first look up e1 in the em_app field,
which returns an ExprMap. We then look up e2 in that map. Each distinct e1
yields a different ExprMap in which to look up e2.

We can substantially abbreviate this code, at the expense of making it more
cryptic, thus:

lkEM (Var x) = em_var >>> Map.lookup x
lkEM (App e1 e2) = em_app >>> lkEM e1 >=> lkEM e2

The function em_var :: ExprMap v → Map Var v is the auto-generated selector
that picks the em_var field from an EM record, and similarly em_app. The
functions (>>>) and (>=>) are right-associative forward composition operators,
respectively monadic and non-monadic, that chain the individual operations
together (see Fig. 1). Finally, we have η-reduced the definition, by omitting the
m parameter. These abbreviations become quite worthwhile when we add more
constructors, each with more fields, to the key data type.

Notice that in contrast to the approach of Section 2.3, we never compare two
expressions for equality or ordering. We simply walk down the ExprMap structure,
guided at each step by the next node in the target.

This definition is extremely short and natural. But it embodies a hidden
complexity: it requires polymorphic recursion. The recursive call to lkEM e1
instantiates v to a different type than the parent function definition. Haskell
supports polymorphic recursion readily, provided you give type signature to lkEM,
but not all languages do.

6 https://hackage.haskell.org/package/containers

3.3 Modifying tries

It is not enough to look up in a trie – we need to build them too. First, we need
an empty trie. Here is one way to define it:

emptyEM :: ExprMap v
emptyEM = EM {em_var = Map.empty , em_app = emptyEM }

It is interesting to note that emptyEM is an infinite, recursive structure: the
em_app field refers back to emptyEM. We will change this definition in Section 3.5,
but it works perfectly well for now. Next, we need to alter a triemap:

atEM :: Expr → TF v → ExprMap v → ExprMap v
atEM e tf m@(EM {em_var = var , em_app = app}) = case e of
Var x → m {em_var = Map.alter tf x var }
App e1 e2 → m {em_app = atEM e1 (liftTF (atEM e2 tf)) app}

liftTF :: (ExprMap v → ExprMap v)→ TF (ExprMap v)
liftTF f Nothing = Just (f emptyEM)
liftTF f (Just m) = Just (f m)

In the Var case, we must just update the map stored in the em_var field, using
the Map.alter function from Fig. 1. In the App case we look up e1 in app; we
should find a ExprMap there, which we want to alter with tf . We can do that
with a recursive call to atEM, using liftTF for impedance-matching.

The App case shows why we need the generality of alter . Suppose we attempted
to define an apparently-simpler insert operation. Its equation for (App e1 e2)
would look up e1 — and would then need to alter that entry (an ExprMap,
remember) with the result of inserting (e2, v). So we are forced to define alter
anyway.

We can abbreviate the code for atEM using combinators, as we did in the
case of lookup, and doing so pays dividends when the key is a data type with
many constructors, each with many fields. However, the details are fiddly and
not illuminating, so we omit them here. Indeed, for the same reason, in the rest
of this paper we will typically omit the code for alter , though the full code is
available in the Appendix.

3.4 Unions of maps

A common operation on finite maps is to take their union:

unionEM :: ExprMap v → ExprMap v → ExprMap v

In tree-based implementations of finite maps, such union operations can be tricky.
The two trees, which have been built independently, might not have the same
left-subtree/right-subtree structure, so some careful rebalancing may be required.
But for tries there are no such worries – their structure is identical, and we can
simply zip them together. There is one wrinkle: just as we had to generalise insert
to alter , to accommodate the nested map in em_app, so we need to generalise
union to unionWith:

unionWithEM :: (v → v → v)
→ ExprMap v → ExprMap v → ExprMap v

When a key appears on both maps, the combining function is used to combine
the two corresponding values. With that generalisation, the code is as follows:

unionWithEM f (EM {em_var = var1, em_app = app1})
(EM {em_var = var2, em_app = app2})

= EM {em_var = Map.unionWith f var1 var2
, em_app = unionWithEM (unionWithEM f) app1 app2}

It could hardly be simpler.

3.5 Folds and the empty map

The strange, infinite definition of emptyEM given in Section 3.3 works fine (in a
lazy language at least) for lookup, alteration, and union, but it fails fundamentally
when we want to iterate over the elements of the trie. For example, suppose we
wanted to count the number of elements in the finite map; in containers this is
the function Map.size (Fig. 1). We might attempt:

sizeEM :: ExprMap v → Int
sizeEM (EM {em_var = var , em_app = app})

= Map.size var+???

We seem stuck because the size of the app map is not what we want: rather, we
want to add up the sizes of its elements, and we don’t have a way to do that yet.
The right thing to do is to generalise to a fold:

foldrEM :: ∀v . (v → r → r)→ r → ExprMap v → r
foldrEM k z (EM {em_var = var , em_app = app})

= Map.foldr k z1 var
where
z1 = foldrEM kapp z (app :: ExprMap (ExprMap v))
kapp m1 r = foldrEM k r m1

In the binding for z1 we fold over app, using kapp to combine the map we find
with the accumulator, by again folding over the map with foldrEM.

But alas, foldrEM will never terminate! It always invokes itself immediately
(in z1) on app; but that invocation will again recursively invoke foldrEM; and so
on forever. The solution is simple: we just need an explicit representation of the
empty map. Here is one way to do it (we will see another in Section 3.7):

data ExprMap v = EmptyEM | EM {em_var :: ..., em_app :: ...}
emptyEM :: ExprMap v
emptyEM = EmptyEM

foldrEM :: (v → r → r)→ r → ExprMap v → r
foldrEM k z EmptyEM = z
foldrEM k z (EM {em_var = var , em_app = app})

= Map.foldr k z1 var
where
z1 = foldrEM kapp z app
kapp m1 r = foldrEM k r m1

Equipped with a fold, we can easily define the size function, and another that
returns the range of the map:

sizeEM :: ExprMap v → Int
sizeEM = foldrEM (λ n→ n + 1) 0

elemsEM :: ExprMap v → [v]
elemsEM = foldrEM (:) []

3.6 A type class for triemaps

Since all our triemaps share a common interface, it is useful to define a type class
for them:

class Eq (Key tm)⇒ TrieMap tm where
type Key tm :: Type
emptyTM :: tm a
lkTM :: Key tm→ tm a→ Maybe a
atTM :: Key tm→ TF a→ tm a→ tm a
foldrTM :: (a→ b → b)→ tm a→ b → b
unionWithTM :: (a→ a→ a)→ tm a→ tm a→ tm a
. . .

The class constraint TrieMap tm says that the type tm is a triemap, with opera-
tions emptyTM, lkTM etc. The class has an associated type [Chakravarty et al.(2005)],
Key tm, a type-level function that transforms the type of the triemap into the
type of keys of that triemap.

Now we can witness the fact that ExprMap is a TrieMap, like this:

instance TrieMap ExprMap where
type Key ExprMap = Expr
emptyTM = emptyEM
lkTM = lkEM
atTM = atEM
. . .

Having a class allow us to write helper functions that work for any triemap, such
as

insertTM :: TrieMap tm⇒ Key tm→ v → tm v → tm v
insertTM k v = atTM k (_→ Just v)

deleteTM :: TrieMap tm⇒ Key tm→ tm v → tm v
deleteTM k = atTM k (_→ Nothing)

But that is not all. Suppose our expressions had multi-argument apply nodes,
AppV , thus

data Expr = . . . | AppV Expr [Expr]

Then we would need to build a trie keyed by a list of Expr . A list is just another
algebraic data type, built with nil and cons, so we could use exactly the same
approach, thus

lkLEM :: [Expr]→ ListExprMap v → Maybe v

But rather than to define a ListExprMap for keys of type [Expr], and a ListDeclMap
for keys of type [Decl], etc, we would obviously prefer to build a trie for lists of
any type, like this [Hinze(2000a)]:

instance TrieMap tm⇒ TrieMap (ListMap tm) where
type Key (ListMap tm) = [Key tm]
emptyTM = emptyLM
lkTM = lkLM
...

data ListMap tm v = LM { lm_nil ::Maybe v
, lm_cons :: tm (ListMap tm v)}

emptyLM :: TrieMap tm⇒ ListMap tm
emptyLM = LM { lm_nil = Nothing , lm_cons = emptyTM }
lkLM :: TrieMap tm⇒ [Key tm]→ ListMap tm v → Maybe v
lkLM [] = lm_nil
lkLM (k : ks) = lm_cons >>> lkTM k >=> lkLM ks

The code for atLM and foldrLM is routine. Notice that all of these functions are
polymorphic in tm, the triemap for the list elements.

3.7 Singleton maps, and empty maps revisited

Suppose we start with an empty map, and insert a value with a key (an Expr)
such as

App (App (Var "f") (Var "x")) (Var "y")

Looking at the code for atEM in Section 3.3, you can see that because there is
an App at the root, we will build an EM record with an empty em_var , and an
em_app field that is... another EM record. Again the em_var field will contain
an empty map, while the em_app field is a further EM record.

In effect, the key is linearised into a chain of EM records. This is great when
there are a lot of keys with shared structure, but once we are in a sub-tree that
represents a single key-value pair it is a rather inefficient way to represent the
key. So a simple idea is this: when a ExprMap represents a single key-value pair,
represent it directly as a key-value pair, like this:

data ExprMap v = EmptyEM
| SingleEM Expr v -- A single key/value pair
| EM {em_var :: ..., em_app :: ...}

But in the triemap for for each new data type X , we will have to tiresomely repeat
these extra data constructors, EmptyX and SingleX . For example we would have
to add EmptyList and SingleList to the ListMap data type of Section 3.6. It is
better instead to abstract over the enclosed triemap, as follows7:

data SEMap tm v = EmptySEM
| SingleSEM (Key tm) v
| MultiSEM (tm v)

instance TrieMap tm⇒ TrieMap (SEMap tm) where
type Key (SEMap tm) = Key tm
emptyTM = EmptySEM
lkTM = lkSEM
atTM = atSEM
...

The code for lookup practically writes itself. We abstract over Maybe with some
MonadPlus combinators to enjoy forwards compatibility to Section 5:

lkSEM :: TrieMap tm⇒ Key tm→ SEMap tm v → Maybe v
lkSEM k m = case m of
EmptySEM → mzero
SingleSEM pk v → guard (k == pk) >> pure v
MultiSEM m → lkTM k m

Where mzero means Nothing and pure means Just. The guard expression in the
SingleSEM will return Nothing when the key expression k doesn’t equate to
the pattern expression pk. To test for said equality we require an Eq (Key tm)
instance, hence it is a superclass of TrieMap tm in the class declaration in
Section 3.6.

The code for alter is more interesting, because it governs the shift from
EmptySEM to SingleSEM and thence to MultiSEM:

atSEM :: TrieMap tm
⇒ Key tm→ TF v → SEMap tm v → SEMap tm v

atSEM k tf EmptySEM = case tf Nothing of Nothing → EmptySEM
Just v → SingleSEM k v

atSEM k1 tf (SingleSEM k2 v2) = if k1 == k2

then case tf (Just v2) of
Nothing → EmptySEM
Just v’ → SingleSEM k2 v’

else case tf Nothing of
Nothing → SingleSEM k2 v2

Just v1 → MultiSEM (insertTM k1 v1 (insertTM k2 v2 emptyTM))
atSEM k tf (MultiSEM tm) = MultiSEM (atTM k tf tm)

Adding a new item to a triemap can turn EmptySEM into SingleSEM and
SingleSEM into MultiSEM; and deleting an item from a SingleSEM turns it
back into EmptySEM. You might wonder whether we can shrink a MultiSEM
7 SEMap stands for “singleton or empty map”.

back to a SingleSEM when it has only one remaining element? Yes we can, but it
takes quite a bit of code, and it is far from clear that it is worth doing so.

Finally, we need to re-define ExprMap and ListMap using SEMap:

type ExprMap = SEMap ExprMap’
data ExprMap’ v = EM {em_var :: ..., em_app :: ExprMap (ExprMap v)}
type ListMap = SEMap ListMap’
data ListMap’ tm v = LM { lm_nil :: ..., lm_cons :: tm (ListMap tm v)}

The auxiliary data types ExprMap’ and ListMap’ have only a single constructor,
because the empty and singleton cases are dealt with by SEMap. We reserve the
original, un-primed, names for the user-visible ExprMap and ListMap constructors.

3.8 Generic programming

We have not described a triemap library ; rather we have described a design
pattern. More precisely, given a new algebraic data type X , we have described a
systematic way of defining a triemap, XMap, keyed by values of type X . Such a
triemap is represented by a record:

– Each constructor K of X becomes a field x_k in XMap.
– Each field of a constructor K becomes a nested triemap in the type of the

field x_k.
– If X is polymorphic then XMap becomes a triemap transformer, like ListMap

above.

Actually writing out all this boilerplate code is tiresome, and it can of course be
automated. One way to do so would be to use generic or polytypic programming,
and Hinze describes precisely this [Hinze(2000a)]. Another approach would be to
use Template Haskell.

We do not develop either of these approaches here, because our focus is only
the functionality and expressiveness of the triemaps. However, everything we do
is compatible with an automated approach to generating boilerplate code.

4 Keys with binders

If our keys are expressions (in a compiler, say) they may contain binders, and we
want insert and lookup to be insensitive to α-renaming. That is the challenge
we address next. Here is our data type Expr from Section 2.1, which brings back
binding semantics through the Lam constructor:

data Expr = App Expr Expr | Lam Var Expr | Var Var

The key idea is simple: we perform De Bruijn numbering on the fly, renaming
each binder to a natural number, from outside in. So, when inserting or looking
up a key (λx. foo (λy. x+ y)) we behave as if the key was (λ. foo (λ.#1 +#2)),
where each #i stands for an occurrence of the variable bound by the i’th lambda,

type DBNum = Int
data DBEnv = DBE {dbe_next :: DBNum, dbe_env ::Map Var DBNum}
emptyDBE :: DBEnv
emptyDBE = DBE {dbe_next = 1, dbe_env = Map.empty }
extendDBE :: Var → DBEnv → DBEnv
extendDBE v (DBE {dbe_next = n, dbe_env = dbe })

= DBE {dbe_next = n + 1, dbe_env = Map.insert v n dbe }
lookupDBE :: Var → DBEnv → Maybe DBNum
lookupDBE v (DBE {dbe_env = dbe }) = Map.lookup v dbe

Fig. 2: De Bruijn leveling

counting from the root of the expression. In effect, then, we behave as if the data
type was like this:

data Expr’ = App Expr Expr | Lam Expr | FVar Var | BVar BoundKey

Notice (a) the Lam node no longer has a binder and (b) there are two sorts of Var
nodes, one for free variables and one for bound variables, carrying a BoundKey
(see below). We will not actually build a value of type Expr’ and look that up
in a trie keyed by Expr’ ; rather, we are going to behave as if we did. Here is the
code (which uses Fig. 2):

data ModAlpha a = A DBEnv a
type AlphaExpr = ModAlpha Expr
instance Eq AlphaExpr where ...
type BoundKey = DBNum
type ExprMap = SEMap ExprMap’
data ExprMap’ v

= EM {em_fvar ::Map Var v -- Free vars
, em_bvar ::Map BoundKey v -- Lambda-bound vars
, em_app :: ExprMap (ExprMap v)
, em_lam :: ExprMap v }

instance TrieMap ExprMap’ where
type Key ExprMap’ = AlphaExpr
lkTM = lkEM
...

lkEM :: AlphaExpr → ExprMap’ v → Maybe v
lkEM (A bve e) = case e of
Var v → case lookupDBE v bve of
Nothing → em_fvar >>> Map.lookup v
Just bv → em_bvar >>> Map.lookup bv

App e1 e2 → em_app >>> lkTM (A bve e1) >=> lkTM (A bve e2)
Lam v e → em_lam >>> lkTM (A (extendDBE v bve) e)

lookupClosedExpr :: Expr → ExprMap v → Maybe v
lookupClosedExpr e = lkEM (A emptyDBE e)

We maintain a DBEnv (cf. Fig. 2) that maps each lambda-bound variable to its
De Bruijn level8 [de Bruijn(1972)], its BoundKey . The expression we look up —
the first argument of lkEM — becomes an AlphaExpr , which is a pair of a DBEnv
and an Expr . At a Lam node we extend the DBEnv . At a Var node we look up
the variable in the DBEnv to decide whether it is lambda-bound or free, and
behave appropriately9.

The construction of Section 3.7, to handle empty and singleton maps, applies
without difficulty to this generalised map. To use it we must define an instance
Eq AlphaExpr to satisfy the Eq super class constraint on the trie key, so that we
can instantiate TrieMap ExprMap’. That Eq AlphaExpr instance simply equates
two α-equivalent expressions in the standard way. The code for alter and foldr
holds no new surprises either.

And that is really all there is to it: it is remarkably easy to extend the basic
trie idea to be insensitive to α-conversion and even mix in trie transformers such
as SEMap at no cost other than writing two instance declarations.

5 Tries that match

A key advantage of tries over hash-maps and balanced trees is that we can support
matching (Section 2.2).

5.1 What “matching” means

Semantically, a matching trie can be thought of as a set of entries, each of which
is a (pattern, value) pair. What is a pattern? It is a pair (vs, p) where

– vs is a set of pattern variables, such as [a, b, c].
– p is a pattern expression, such as f a (g b c).

A pattern may of course contain free variables (not bound by the pattern), such as
f and g in the above example, which are regarded as constants by the algorithm.
A pattern (vs, p) matches a target expression e iff there is a unique substitution
S whose domain is vs, such that S(p) = e.

We allow the same variable to occur more than once in the pattern. For
example, the pattern ([x], f x x) should match targets like (f 1 1) or (f (g v) (g v)),
but not (f 1 (g v)). This ability is important if we are to use matching tries to
implement class or type-family look in GHC.

8 The De Bruijn index of the occurrence of a variable v counts the number of lambdas
between the occurrence of v and its binding site. The De Bruijn level of v counts
the number of lambdas between the root of the expression and v’s binding site. It is
convenient for us to use levels.

9 The implementation from the Appendix uses more efficient IntMaps for mapping
BoundKey . IntMap is a itself trie data structure, so it could have made a nice “Tries
all the way down” argument. But we found it distracting to present here, hence
regular ordered Map.

In implementation terms, we can characterise matching by the following type
class:

class (Eq (Pat k),MonadPlus (Match k))⇒ Matchable k where
type Pat k :: Type
type Match k :: Type → Type
match :: Pat k → k → Match k ()

For any key type k, the match function takes a pattern of type Pat k, and a
key of type k, and returns a monadic match of type Match k (), where Pat and
Match are associated types of k. Matching can fail or can return many results,
so Match k is a MonadPlus:

mzero ::MonadPlus m⇒ m a
mplus ::MonadPlus m⇒ m a→ m a→ m a

To make this more concrete, here is a possible Matchable instance for AlphaExpr :

instance Matchable AlphaExpr where
type Pat AlphaExpr = PatExpr
type Match AlphaExpr = MatchExpr
match = matchE

Let’s look at the pieces, one at a time.

Patterns A pattern PatExpr over AlphaExpr can be defined like this:

data PatExpr = P PatKeys AlphaExpr
type PatKeys = Map PatVar PatKey
type PatVar = Var
type PatKey = DBNum

A pattern PatExpr is a pair of an AlphaExpr and a PatKeys that maps each of
the quantified pattern variables to a canonical De Bruijn PatKey . Just as in
Section 4, PatKeys make the pattern insensitive to the particular names, and
order of quantification, of the pattern variables. We canonicalise the quantified
pattern variables before starting a lookup, numbering pattern variables in the
order they appear in a left-to-right scan. For example

Original pattern Canonical PatExpr
([a, b], f a b a) P [a 7→ 1, b 7→ 2] (f a b a)
([x , g], f (g x) P [x 7→ 2, g 7→ 1] (f (g x))

The matching monad There are many possible implementation of theMatchExpr
monad, but here is one:

type MatchExpr v = MR (StateT Subst [] v)
type Subst = Map PatKey Expr

The MatchExpr type is isomorphic to Subst → [(v ,Subst)]; matching takes a
substitution for pattern variables (more precisely, their canonical PatKeys), and
yields a possibly-empty list of values paired with an extended substitution. Notice
that the substitution binds pattern keys to Expr , not AlphaExpr , because the
pattern variables cannot mention lambda-bound variables within the target
expression.

The formulation in terms of StateT endows us with just the right Monad and
MonadPlus instances, as well as favorable performance because of early failure
on contradicting matches and the ability to share work done while matching a
shared prefix of multiple patterns.

The monad comes with some auxiliary functions that we will need later:

runMatchExpr ::MatchExpr v → [(Subst, v)]
liftMaybe ::Maybe v → MatchExpr v
refineMatch :: (Subst → Maybe Subst)→ MatchExpr ()

Their semantics should be apparent from their types. For example, runMatchExpr
runs a MatchExpr computation, starting with an empty Subst, and returning a
list of all the successful (Subst, v) matches.

Matching summary The implementation of matchE is entirely straightforward,
using simultaneous recursive descent over the pattern and target. The code is
given in the Appendix.

The key point is this: nothing in this section is concerned with tries. Here we
are simply concerned with the mechanics of matching, and its underlying monad.
There is ample room for flexibility. For example, if the key terms had two kinds
of variables (say type variables and term variables) we could easily define Match
to carry two substitutions; or Match could return just the first result rather than
a list of all of them; and so on.

5.2 The matching trie class

The core of our matching trie is the classMTrieMap, which generalises the TrieMap
class of Section 3.6:

class Matchable (MKey tm)⇒ MTrieMap tm where
type MKey tm :: Type
emptyMTM :: tm v
lkMTM ::MKey tm→ tm v → Match (MKey tm) v
atMTM :: Pat (MKey tm)→ TF v → tm v → tm v

The lookup function takes a key of type MKey tm as before, but it returns
something in the Match monad, rather than the Maybe monad. The atMTM
takes a pattern (rather than just a key), of type Pat (MKey tm), and alters the
trie’s value at that pattern10.
10 Remember, a matching trie represents a set of (pattern,value) pairs.

We can generalise SEMap (Section 3.7) in a similar way:

data MSEMap tm v = EmptyMSEM
| SingleMSEM (Pat (MKey tm)) v
| MultiMSEM (tm v)

instance MTrieMap tm⇒ MTrieMap (MSEMap tm) where
type MKey (MSEMap tm) = MKey tm
emptyMTM = EmptyMSEM
lkMTM = lkMSEM
atMTM = atMSEM

Notice that SingleMSEM contains a pattern, not merely a key, unlike SingleSEM
in Section 3.7. The code for lkMSEM and atMSEM is straightforward; we give
the former here, leaving the latter for the Appendix

lkMSEM ::MTrieMap tm⇒ MKey tm→ MSEMap tm a
→ Match (MKey tm) a

lkMSEM k EmptyMSEM = mzero
lkMSEM k (MultiMSEM m) = lkMTM k m
lkMSEM k (SingleMSEM pat v) = match pat k >> pure v

Notice the call to mzero to make the lookup fail if the map is empty; and, in the
SingleMSEM case, the call match to match the pattern against the key.

5.3 Matching tries for Expr

Next, we show how to implement a matching triemap for our running example,
AlphaExpr . The data type follows closely the pattern we developed for ExprMap
(Section 4):

type MExprMap = MSEMap MExprMap’

data MExprMap’ v
= MM {mm_fvar ::Map Var v -- Free var

,mm_bvar ::Map BoundKey v -- Bound var
,mm_pvar ::Map PatKey v -- Pattern var
,mm_app ::MExprMap (MExprMap v)
,mm_lam ::MExprMap v }

instance MTrieMap MExprMap’ where
type MKey MExprMap’ = AlphaExpr
emptyMTM = ... -- boring
lkMTM = lookupPatMM
atMTM = alterPatMM

The main difference is that we add an extra field mm_pvar to MExprMap’, for
occurrences of a pattern variable. You can see how this field is used in the lookup
code:

lookupPatMM :: ∀v .AlphaExpr → MExprMap’ v → MatchExpr v
lookupPatMM ae@(A bve e) (MM { . .})

= rigid ‘mplus‘ flexi
where
rigid = case e of
Var x → case lookupDBE x bve of
Just bv → mm_bvar . liftMaybe ◦Map.lookup bv
Nothing → mm_fvar . liftMaybe ◦Map.lookup x

App e1 e2 → mm_app . lkMTM (A bve e1)
>=> lkMTM (A bve e2)

Lam x e → mm_lam . lkMTM (A (extendDBE x bve) e)

flexi = mm_pvar . IntMap.toList .map match_one .msum

match_one :: (PatVar , v)→ MatchExpr v
match_one (pv , v) = matchPatVarE pv ae >> pure v

Matching lookup on a trie matches the target expression against all patterns
the trie represents. The rigid case is no different from exact lookup; compare
the code for lkEM in Section 4. The only difference is that we need liftMaybe
(from Section 5.1) to take the Maybe returned by Map.lookup and lift it into the
MatchExpr monad.

The flexi case handles the triemap entries whose pattern is simply one of the
quantified pattern variables; these entries are stored in the new mm_pvar field.
We enumerate these entries with toList, to get a list of (PatVar , v) pairs, match
each such pair against the target with match_one, and finally accumulate all the
results with msum. In turn match_one uses matchParVarE to match the pattern
variable with the target and, if successful, returns corresponding value v .

The matchPatVarE function does the heavy lifting, using some simple auxiliary
functions whose types are given below:

matchPatVarE :: PatKey → AlphaExpr → MatchExpr ()
matchPatVarE pv (A bve e) = refineMatch $ λms →
case Map.lookup pv ms of
Nothing -- pv is not bound
| noCaptured bve e → Just (Map.insert pv e ms)
| otherwise → Nothing

Just sol -- pv is already bound
| noCaptured bve e
, eqExpr e sol → Just ms
| otherwise → Nothing

eqExpr :: Expr → Expr → Bool
noCaptured :: DBEnv → Expr → Bool

To match a pattern variable pv against an expression (A bve e), we first look up
pv in the current substitution (obtained from the MatchExpr state monad. If pv
is not bound we simply extend the substitution.

But wait! Consider matching the pattern ([p], λx → p) against the target
(λy → 3). That’s fine: we should succeed, binding a to 3. But suppose we
match that same pattern against target (λy → y). It would be nonsense to
“succeed” binding a to y , because y is locally bound within the target. Hence the

noCaptured test, which returns True iff the expression does not mention any of
the locally-bound variables.

If pv is already bound in the substitution, we have a repeated pattern variable
(see Section 5.1), and we must check that the target expression is equal (using
eqExpr) to the the one already bound to pv . Once again, however, we must
check that the target does not contain any locally-bound variables, hence the
noCaptured check.

lookupPatMM is the trickiest case. The code for alterPatMM, and the other
operations of the class, is very straightforward, and is given in the Appendix.

5.4 The external API

The matching tries we have described so far use canonical pattern keys, a matching
monad, and other machinery that should be hidden from the client. We seek an
external API more like this:

type PatMap :: Type → Type
alterPM :: ([Var],Expr)→ TF v → PatMap v → PatMap v
lookupPM :: Expr → PatMap v → [(PatSubst, v)]
type PatSubst = [(Var ,Expr)]

When altering a PatMap we supply a client-side pattern, which is just a pair
([Var],Expr) of the quantified pattern variables and the pattern. When looking
up in a PatMap we supply a target expression, and get back a list of matches,
each of which is a pair of the value and the substitution for those original pattern
variables that made the pattern equal to the target.

So alterPM must canonicalise the client-side pattern variables before altering
the trie; that is easy enough. But how can lookupPM recover the client-side
PatSubst? Somehow we must remember the canonicalisation used when inserting
so that we can invert it when matching. For example, suppose we insert the two
(pattern, value pairs)

(([p], f p True), v1) and (([q], f q False), v2)

Both patterns will canonicalise their (sole) pattern variable to the De Bruin index
1. So if we look up the target (f e True) the MatchExpr monad will produce a
final Subst that maps [1 7→ e], paired with the value v1. But we want to return
([("p", e)], v1) to the client, a PatSubst that uses the client variable "p", not the
internal index 1.

The solution is simple enough: we store the mapping in the triemap’s domain,
along with the values, thus:

type PatMap v = MExprMap (PatKeys, v)

Now the code writes itself. Here is alterPM:

alterPM :: ∀v . ([Var],Expr)→ TF v → PatMap v → PatMap v
alterPM (pvars, e) tf pm = atMTM pat ptf pm

where
pks :: PatKeys = canonPatKeys pvars e

pat :: PatExpr = P pks (A emptyDBE e)

ptf :: TF (PatKeys, v)
ptf Nothing = fmap (λv → (pks, v)) (tf Nothing)
ptf (Just (, v)) = fmap (λv → (pks, v)) (tf (Just v))

canonPatKeys :: [Var]→ Expr → PatKeys

The auxiliary function canonPatKeys takes the client-side pattern (pvars, e), and
returns a PatKeys (Section 5.1) that maps each pattern variable to its canonical
De Bruijn index. canonPatKeys is entirely straightforward: it simply walks the
expression, numbering off the pattern variables in left-to-right order.

Then we can simply call the internal atMTM function, passing it: a canonical
pat ::PatExpr ; and a transformer ptf ::TF (PatKeys, v) that will pair the PatKeys
with the value supplied by the user via tf :: TF v . Lookup is equally easy:

lookupPM :: Expr → PatMap v → [(PatSubst, v)]
lookupPM e pm

= [(Map.toList (subst ‘Map.compose‘ pks), x)
| (subst, (pks, x))← runMatchExpr $

lkMTM (A emptyDBE e) pm]

We use runMatchExpr to get a list of successful matches, and then pre-compose
(see Fig. 1) the internal Subst with the PatKeys mapping that is part of the match
result. We turn that into a list to get the client-side PatSubst. The only tricky
point is what to do with pattern variables that are not substituted. For example,
suppose we insert the pattern ([p, q], f p). No lookup will bind q, because q
simply does not appear in the pattern. One could reject this on insertion, but
here we simply return a PatSubst with no binding for q.

5.5 Most specific match, and unification

It is tempting to ask: can we build a lookup that returns only the most specific
matches? And, can we build a lookup that returns all values whose patterns unify
with the target. Both would have useful applications, in GHC at least.

However, both seem difficult to achieve. All our attempts became mired in
complexity, and we leave this for further work, and as a challenge for the reader.
We outline some of the difficulties of unifying lookup in Appendix B.

6 Evaluation

So far, we have seen that trie maps offer a significant advantage over other kinds
of maps like ordered maps or hash maps: the ability to do a matching lookup
(in Section 5). In this section, we will see that query performance is another
advantage. Our implementation of trie maps in Haskell can generally compete in
performance with other map data structures, while significantly outperforming

lookup lookup_lam fromList union

0.5x

1.5x

2x

1x

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.9
9

··
·5
.1
2

0
.9
9

1
.0
1

1
.7
1

··
·2
.0
6

··
·3
.6
7

1
.0
0

R
el
at
iv
e
ti
m
e
(l
ow

er
is

be
tt
er
) TM

OM
HM

Fig. 3: Benchmarks comparing our trie map (TM) to ordered maps (OM) and
hash maps (HM)

traditional map implementations on some operations. Not bad for a data structure
that we can also extend to support matching lookup!

We took runtime measurements of the (non-matching) ExprMap data structure
on a selection of workloads, conducted using the criterion11 benchmarking library12.
Fig. 3 presents a quick overview of the results.

Appendix A is an extended version of this section, featuring a more in-depth
analysis, finer runtime as well as space measurements and indicators for statistical
significance.

Setup All benchmarks except fromList are handed a pre-built map containing
10000 expressions, each consisting of roughly 100 Expr data constructors drawn
from a pseudo-random source with a fixed (and thus deterministic) seed.

We compare three different non-matching map implementations, simply be-
cause we were not aware of other map data structures with matching lookup
modulo α-equivalence and we wanted to compare apples to apples. The ExprMap
forms the baseline. Asymptotics are given with respect to map size n and key
expression size k:

11 https://hackage.haskell.org/package/criterion
12 The benchmark machine runs Ubuntu 18.04 on an Intel Core i5-8500 with 16GB

RAM. All programs were compiled on GHC 9.0.2 with -O2 -fproc-alignment=64
to eliminate code layout flukes and run with +RTS -A128M -RTS for 128MB space in
generation 0 in order to prevent major GCs from skewing the results.

– ExprMap (designated “TM” in Fig. 3) is the trie map implementation from
this paper. Insertion and lookup perform at most one full traversal of the
key, so performance should scale with O(k).

– Map Expr (designated “OM”) is the ordered map implementation from the
mature, well-optimised containers13 library. It uses size balanced trees under
the hood [Adams(1993)]. Thus, lookup and insert operations incur an addi-
tional log factor in the map size n, for a total of O(k log n) factor compared
to both other maps.

– HashMap Expr (designated “HM”) is an implementation of hash array mapped
tries [Bagwell(2001)] from the unordered-containers14 library. Like ExprMap,
map access incurs a full traversal of the key to compute a hash and then a
O(log32 n) lookup in the array mapped trie, as well as an expected constant
number of key comparisons to resolve collisions. The log factor can be treated
like a constant for all intents and purposes, so lookup and insert is effectively
in O(k).

Some clarification as to what our benchmarks measure:

– The lookup benchmark looks up every expression that is part of the map.
So for a map of size 10000, we perform 10000 lookups of expressions each of
which have approximately size 100.

– lookup_lam is like lookup, but wraps a shared prefix of 100 layers of
(Lam "$") around each expression.

– fromList benchmarks a naïve fromList implementation on ExprMap against
the tuned fromList implementations of the other maps, measuring map cre-
ation performance from batches.

Querying The results suggest that ExprMap is about as fast as Map Expr
for completely random expressions in lookup. But in a more realistic scenario,
at least some expressions share a common prefix, which is what lookup_lam
embodies. There we can see that ExprMap wins against Map Expr by a huge
margin: ExprMap looks at the shared prefix exactly once on lookup, while Map has
to traverse the shared prefix of length O(k) on each of its O(log n) comparisons.

Although HashMap loses on most benchmarks compared to ExprMap and
Map, most measurements were consistently at most a factor of two slower than
ExprMap. We believe that is due to the fact that it is enough to traverse the
Expr twice during lookup barring any collisions (hash and then equate with the
match), thus it is expected to scale similarly as ExprMap. Thus, both ExprMap
and HashMap perform much more consistently than Map.

Modification While ExprMap consistently wins in query performance, the edge
is melting into insignificance for fromList and union. One reason is the uniform
distribution of expressions in these benchmarks, which favors Map. Still, it is a
13 https://hackage.haskell.org/package/containers
14 https://hackage.haskell.org/package/unordered-containers

surprise that the naïve fromList implementations of ExprMap and Map as list folds
beat the one of HashMap, although the latter has a tricky, performance-optimised
implementation using transient mutability.

What would a non-naïve version of fromList for ExprMap look like? Perhaps
the process could be sped up considerably by partitioning the input list according
to the different fields of ExprMap and then calling the fromList implementations of
the individual fields in turn. The process would be very similar to discrimination
sort [Henglein(2008)], which is a generalisation of radix sort to tree-like data and
very close to tries. Indeed, the discrimination15 library provides such an optimised
O(n) toMap implementation for Map.

7 Related work

7.1 Matching triemaps in automated reasoning

Matching triemaps, a kind of term index, have been used in the automated
reasoning community for decades. An automated reasoning system has hundreds
or thousands of axioms, each of which is quantified over some variables (just like
the RULEs described in Section 2.2). Each of these axioms might apply at any
sub-tree of the term under consideration, so efficient matching of many axioms is
absolutely central to the performance of these systems.

This led to a great deal of work on so-called discrimination trees, starting
in the late 1980’s, which is beautifully surveyed in the Handbook of Automated
Reasoning [Sekar et al.(2001), Chapter 26]. All of this work typically assumes a
single, fixed, data type of “first order terms” like this16

data MKey = Node Fun [MKey]

where Fun is a function symbol, and each such function symbol has a fixed
arity. Discrimination trees are described by imagining a pre-order traversal that
(uniquely, since function symbols have fixed arity) converts the MKey to a list of
type [Fun], and treating that as the key. The map is implemented like this:

data DTree v = DVal v | DNode (Map Fun DTree)

lookupDT :: [Fun]→ DTree v → Maybe v
lookupDT [] (DVal v) = Just v
lookupDT (f : fs) (DNode m) = case Map.lookup f m of

Just dt → lookupDT fs dt
Nothing → Nothing

lookupDT = Nothing

Each layer of the tree branches on the first Fun, and looks up the rest of the
[Fun] in the appropriate child. Extending this basic setup with matching is done
by some kind of backtracking.
15 https://hackage.haskell.org/package/discrimination
16 Binders in terms do not seem to be important in these works, although they could

be handled fairly easily by a De Bruijn pre-pass.

Discrimination trees are heavily used by theorem provers, such as Coq, Isabelle,
and Lean. Moreover, discrimination trees have been further developed in a number
of ways. Vampire uses code trees which are a compiled form of discrimination
tree that stores abstract machine instructions, rather than a data structure at
each node of the tree [Voronkov(1995)]. Spass [Weidenbach et al.(2009)] uses
substitution trees [Graf and Meyer(1996)], a refinement of discrimination trees
that can share common sub-trees not just common prefixes. (It is not clear whether
the extra complexity of substitution trees pays its way.) Z3 uses E-matching code
trees, which solve for matching modulo an ever-growing equality relation, useful
in saturation-based theorem provers. All of these techniques except E-matching
are surveyed in [Sekar et al.(2001)].

If we applied our ideas to MKey we would get a single-field triemap which
(just like lookupDT) would initially branch on Fun, and then go though a chain
of ListMap constructors (which correspond to the DNode above). You have to
squint pretty hard — for example, we do the pre-order traversal on the fly —
but the net result is very similar, although it is arrived at by entirely different
thought process.

Many of the insights of the term indexing world re-appear, in different guise, in
our triemaps. For example, when a variable is repeated in a pattern we can eagerly
check for equality during the match, or instead gather an equality constraint and
check those constraints at the end [Sekar et al.(2001), Section 26.14].

A related application of matching tries appear in [Perera et al.(2022), Section
2.2], where eliminators express both parameter-binding and pattern-matching
in a single Core language construct, with a semantics not unlike GHC’s own
-XLambdaCase extension. They realise that their big-step interpreter implements
eliminators via special generalised tries that can express variable matching –
which corresponds to our triemaps applied to linear patterns.

7.2 Haskell triemaps

Trie data structures have found their way into numerous Haskell packages over
time. There are trie data structures that are specific to String , like the StringMap17

package, or polymorphically, requiring just a type class for trie key extraction,
like the TrieMap18 package. None of these libraries describe how to index on
expression data structures modulo α-equivalence or how to perform matching
lookup.

Memoisation has been a prominent application of tries in Haskell [Hinze(2000b),Elliott(2008b),Elliott(2008a)].
Given a function f , the idea is to build an infinite, lazily-evaluated trie, that maps
every possible argument x to (a thunk for) (f x). Now, a function call becomes
a lookup in the trie. The ideas are implemented in the MemoTrie19 library. For
memo tries, operations like alter, insert, union, and fold are all irrelevant: the
infinite trie is built once, and then used only for lookup.

17 https://hackage.haskell.org/package/StringMap
18 https://hackage.haskell.org/package/TrieMap
19 https://hackage.haskell.org/package/MemoTrie

A second strand of work concerns data type generic, or polytypic, approaches
to generating tries, which nicely complements the design-pattern approach of
this paper (Section 3.8). [Hinze(2000a)] describes the polytypic approach, for
possibly parameterised and nested data types in some detail, including the
realisation that we need alter and unionWith in order to define insert and union.
A generalisation of those ideas then led to functor-combo20. The representable-
tries21 library observes that trie maps are representable functors and then vice
versa tries to characterise the sub-class of representable functors for which there
exists a trie map implementation.

The twee-lib22 library defines a simple term index data structure based on
discrimination trees for the twee equation theorem prover. We would arrive at a
similar data structure in this paper had we started from an expression data type

data Expr = App Con [Expr] | Var Var

In contrast to our ExprMap, twee’s Index does path compression not only for
paths ending in leaves (as we do) but also for internal paths, as is common for
radix trees.

It is however unclear how to extend twee’s Index to support α-equivalence,
hence we did not consider it for our benchmarks in Section 6.

8 Conclusion

We presented trie maps as an efficient data structure for representing a set of
expressions modulo α-equivalence, re-discovering polytypic deriving mechanisms
described by [Hinze(2000a)]. Subsequently, we showed how to extend this data
structure to make it aware of pattern variables in order to interpret stored
expressions as patterns. The key innovation is that the resulting trie map allows
efficient matching lookup of a target expression against stored patterns. This
pattern store is quite close to discrimination trees [Sekar et al.(2001)], drawing a
nice connection to term indexing problems in the automated theorem proving
community.

Acknowledgments

We warmly thank Leonardo de Moura and Edward Yang for their very helpful
feedback.

References

[Adams(1993)] Stephen Adams. 1993. Functional Pearls Efficient sets—a balancing act.
Journal of Functional Programming 3, 4 (1993), 553–561. https://doi.org/10.
1017/S0956796800000885

20 https://hackage.haskell.org/package/functor-combo
21 https://hackage.haskell.org/package/representable-tries
22 https://hackage.haskell.org/package/twee-lib

[Bagwell(2001)] Phil Bagwell. 2001. Ideal Hash Trees. Technical Report. Infoscience
Department, École Polytechnique Fédérale de Lausanne.

[Chakravarty et al.(2005)] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Pey-
ton Jones. 2005. Associated Type Synonyms. In Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming (Tallinn, Estonia)
(ICFP ’05). Association for Computing Machinery, New York, NY, USA, 241–253.
https://doi.org/10.1145/1086365.1086397

[Connelly and Morris(1995)] Richard Connelly and F Lockwood Morris. 1995. A gen-
eralization of the trie data structure. Mathematical structure in computer science 5
(1995), 381–418. Issue 3.

[de Bruijn(1972)] N.G de Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75, 5 (1972),
381–392. https://doi.org/10.1016/1385-7258(72)90034-0

[Elliott(2008a)] Conal Elliott. 2008a. Composing memo tries. http://conal.net/
blog/posts/composing-memo-tries.

[Elliott(2008b)] Conal Elliott. 2008b. Elegant memoization
with functional memo tries. http://conal.net/blog/posts/
elegant-memoization-with-functional-memo-tries.

[Graf and Meyer(1996)] P Graf and C Meyer. 1996. Advanced indexing operations
on substitution trees. In Proc International Conference on Automated Deduction
(CADE’96), LNCS 1104, MA McRobbie and Slaney JK (Eds.). Springer.

[Henglein(2008)] Fritz Henglein. 2008. Generic Discrimination: Sorting and Paritioning
Unshared Data in Linear Time. SIGPLAN Not. 43, 9 (Sept. 2008), 91–102. https:
//doi.org/10.1145/1411203.1411220

[Hinze(2000a)] Ralf Hinze. 2000a. Generalizing Generalized Tries. Journal of Functional
Programming 10, 4 (2000), 327–351. http://journals.cambridge.org/action/
displayAbstract?aid=59745

[Hinze(2000b)] Ralf Hinze. 2000b. Memo Functions, Polytypically!. In Proceedings of
the 2nd Workshop on Generic Programming, Lima‚ Portugal. 17–32.

[Perera et al.(2022)] Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang.
2022. Linked Visualisations via Galois Dependencies. Proc. ACM Program. Lang.
6, POPL, Article 7 (jan 2022), 29 pages. https://doi.org/10.1145/3498668

[Peyton Jones et al.(2001)] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare.
2001. Playing by the rules: rewriting as a practical optimisation technique
in GHC. In 2001 Haskell Workshop (2001 haskell workshop ed.). ACM SIG-
PLAN, ACM. https://www.microsoft.com/en-us/research/publication/
playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/

[Sekar et al.(2001)] R Sekar, IV Ramakrishnan, and A Voronkov. 2001. Handbook of
Automated Reasoning. Vol. 2. Elsevier.

[Voronkov(1995)] A Voronkov. 1995. The anatomy of Vampire: Implementing bottom-
up procedures with code trees. Journal of Automated Reasoning 15 (1995), 237–265.
Issue 2.

[Weidenbach et al.(2009)] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke,
Rohit Kumar, Martin Suda, and Patrick Wischnewski. 2009. SPASS Version 3.5.
In Proc International Conference on Automated Deduction (CADE). Springer,
140–145.

	Introduction
	Talk abstracts
	On the NorCroft Compiler
	Static Analysis for Hardware Design
	When Obfuscations Preserve Constant-Time
	No Need to Imply Anything
	The Contributions of Alan Mycroft to Abstract Interpretation
	Comonadic notions of computation revisited
	How to construct graded monads
	A Tale of Two Graded Calculi: The Marriage of Coeffects and Graded Comonads
	Linearity, Uniqueness, Ownership: An Entente Cordiale
	Sustainable software development - new challenges for programming, language design and program analysis.
	A Symbolic Computing Perspective on Software Systems
	Programming systems deserve a theory too!
	Air quality big data analytics using low-cost sensors
	Parallel Multiprecision Arithmetic the Easy Way
	axs: a workflow automation language for omni-benchmarking and optimization
	Triemaps that match
	Draft papers
	No Need to Imply Anything
	The Contributions of Alan Mycroft to Abstract Interpretation
	Sustainable software development: new challenges for programming, languages design and analysis
	Air quality big data analytics using low-cost sensors
	Triemaps that match Technical Report

