ICCS: The what, why, and how.

Dominic Orchard Department of Computer Science and Technology

UNIVERSITY OF CAMBRIDGE

Institute of Computing for Climate Science

SCHMIDT FUTURES

1850-2021 (Ed Hawkins "Warming stripes")

Increasing resolution

graphics from 4th IPCC report (2007)

Increasing process complexity

Low resolution 300km Mid 25-100km (typical GCM) Higher resolution 1-5km

Collaboration Communication

Collaboration Communication

1. Scaling computational performance

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Approximating sub grid processes

NASA / Wikimedia Commons

Uncertainty / error vs. expense

Hillman et al. 2020

Solution: Data-driven subgrid closures

CNN model

Train on real data or high-resolution model

Explainability?

Integration into GCM?

2. Scaling collaborations

The Two Complexities

Inherent

Accidental

Solution: Software engineering tools & techniques

Processes AGILE **SPRINT 2 SPRINT**

Version control

Debugging

Profiling

& public curators

Build systems & containers

GitHub GitLab

Testing and verification

Structural and culturual/sociological change

Software Sustainability Institute

Society of Research Software Engineers

3. Scaling communication

Environmental Data Science (2022), 1: e11, 1–28 doi:10.1017/eds.2022.10

APPLICATION PAPER 🚺 😳

A sensitivity analysis of a regression model of ocean temperature

Rachel Furner^{1,2,*} , Peter Haynes¹, Dave Munday², Brooks Paige³, Daniel C. Jones² and Emily Shuckburgh⁴

¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom ²British Antarctic Survey, Cambridge, United Kingdom

³UCL Centre for Artificial Intelligence, Computer Science, University College London, London, United Kingdom ⁴Department of Computer Science and Technology, University of Cambridge *Corresponding author. E-mail: raf59@cam.ac.uk

Received: 14 January 2022; Revised: 09 June 2022; Accepted: 21 July 2022

Keywords: Data science; interpretable ML; model sensitivity; oceanography; regression model

Abstract

There has been much recent interest in developing data-driven models for weather and climate predictions. However, there are open questions regarding their generalizability and robustness, highlighting a need to better understand how they make their predictions. In particular, it is important to understand whether data-driven models learn the underlying physics of the system against which they are trained, or simply identify statistical patterns without any clear link to the underlying physics. In this paper, we describe a sensitivity analysis of a regression-based model of ocean temperature, trained against simulations from a 3D ocean model setup in a very simple configuration. We show that the regressor heavily bases its forecasts on, and is dependent on, variables known to be key to the physics such as currents and density. By contrast, the regressor does not make heavy use of inputs such as location, which have limited direct physical impacts. The model requires nonlinear interactions between inputs in order to show any meaningful skill—in line with the highly nonlinear dynamics of the ocean. Further analysis interprets the ways certain variables are used by the regression model. We see that information about the vertical profile of the water column reduces errors in regions of convective activity, and information about the currents reduces errors in regions dominated by advective processes. Our results demonstrate that even a simple regression model is capable of learning much of the physics of the system being modeled. We expect that a similar sensitivity analysis could be usefully applied to more complex ocean configurations.

Impact Statement

Machine learning provides a promising tool for weather and climate forecasting. However, for data-driven forecast models to eventually be used in operational settings we need to not just be assured of their ability to perform well, but also to understand the ways in which these models are working, to build trust in these systems. We use a variety of model interpretation techniques to investigate how a simple regression model makes its predictions. We find that the model studied here, behaves in agreement with the known physics of the system. This works shows that data-driven models are capable of learning meaningful physics-based

```
module simulation_mod
 1
      use helpers mod
 2
       implicit none
 3
 4
      contains
 5
 6
       subroutine compute_tentative_velocity(u, v, f, g, flag, del_t)
 8
        real u(0:imax+1, 0:jmax+1), v(0:imax+1, 0:jmax+1), f(0:imax+1, 0:jmax+1), &
 9
             g(0:imax+1, 0:jmax+1)
10
        integer flag(0:imax+1, 0:jmax+1)
11
        real, intent(in) :: del_t
12
13
         integer i, j
14
         real du2dx, duvdy, duvdx, dv2dy, laplu, laplv
15
16
        do i = 1, (imax-1)
17
          do j = 1, jmax
18
            ! only if both adjacent cells are fluid cells */
19
            if (toLogical(iand(flag(i,j), C_F)) .and.
                                                                                   &
20
                 toLogical(iand(flag(i+1,j), C_F))) then
21
22
               du2dx = ((u(i,j)+u(i+1,j))*(u(i,j)+u(i+1,j))+
                                                                                   &
23
                      gamma*abs(u(i,j)+u(i+1,j))*(u(i,j)-u(i+1,j))-
                                                                                   &
24
                      (u(i-1,j)+u(i,j))*(u(i-1,j)+u(i,j))-
                                                                                   &
25
                      gamma * abs(u(i-1,j)+u(i,j))*(u(i-1,j)-u(i,j)))
                                                                                   &
26
                      /(4.0*delx)
27
               duvdy = ((v(i,j)+v(i+1,j))*(u(i,j)+u(i,j+1))+
                                                                                   &
28
                      gamma*abs(v(i,j)+v(i+1,j))*(u(i,j)-u(i,j+1))-
                                                                                   &
29
                      (v(i,j-1)+v(i+1,j-1))*(u(i,j-1)+u(i,j))-
                                                                                   &
30
                      gamma*abs(v(i,j-1)+v(i+1,j-1))*(u(i,j-1)-u(i,j)))
                                                                                   &
31
                            /(4.0*dely)
32
               laplu = (u(i+1,j)-2.0*u(i,j)+u(i-1,j))/delx/delx+
                                                                                   &
33
                      (u(i,j+1)-2.0*u(i,j)+u(i,j-1))/dely/dely
34
              f(i,j) = u(i,j) + del_t*(laplu/Re-du2dx-duvdy)
35
36
            else
37
              f(i,j) = u(i,j)
38
             end if
39
          end do
40
         end do
41
```

3. Challenge: conflation of concerns in code

Solution strategy Prediction calculation Abstract model

Padstriact stredetytion

programs

3. Challenge: conflation of concerns in code

papers

- Extra technical documentation
- Clear systems design
- High modularity

But language support possible: more research needed

Is a future language tailored to science possible?

Collaboration Communication

Emily Shuckburgh

Cambridge Zero + CST

Colm Caulfield

Department of Applied Maths and Theoretical Physics

Chris Edsall

Dominic Orchard

University Information Services

Department of Computer Science & Technology Marla Fuchs

DAMTP

Institute of Computing for Climate Science

Colm Caulfield Emily Shuckburgh Chris Edsall Dominic Orchard Marla Fuchs

Artificial Intelligence

Data Science

Mathematics Software Engineering

Computer Science Programming Langauges

https://www.schmidtfutures.com/our-work/virtual-earth-system-research-institute-vesri/

SCHMIDT FUTURES

Our Work Virtual Earth ... Home

Virtual Earth System Research Institute (VESRI)

VESRI aims to improve the accuracy and credibility of major climate models by addressing some of the hardest problems that challenge them.

Our Mission

Our Work

DataWave

SASIP

LEMONTREE

M²LInES

Postdoctoral Advanced Fellowships

Laura Cimoli

Kacper Kornet

2x more hiring

Research Software Engineers

Simon Clifford

Ben Orchard

Jack Atkinson

Jim Denhom

Alexander Smith

More on the way...

DataWave

SASIP

LEMONTREE

M²LInES

@Cambridge_ICCS https://cambridge-iccs.github.io

UNIVERSITY OF CAMBRIDGE

Institute of Computing for Climate Science

Climate Informatics 2023 April 19-21st University of Cambridge, UK