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FIGURE 3 | Processes incorporated in generations of GCMs from the mid-1970s. Acronyms refer to the four assessment reports (AR) of the
Intergovernmental Panel on Climate Change (IPCC), released in 1990 (FAR), 1995 (SAR), 2001 (TAR), and 2007 (AR4). (Reprinted with permission
from Ref 38. Copyright 2007 Cambridge University Press.)

The Geophysical Fluid Dynamics
Laboratory
The US Weather Bureau created a General Circula-
tion Research Section under the direction of Joseph
Smagorinsky in 1955. In 1955–1956, as lab oper-
ations commenced, Smagorinsky collaborated with
von Neumann, Phillips, and Jule Charney to develop
a 2-level baroclinic model.49 In 1959, Smagorinsky
invited Syukuro Manabe of the Tokyo NWP Group to
join the laboratory and assigned him to GCM devel-
opment. By 1965, Smagorinsky, Manabe, and their
collaborators had completed a 9-level, hemispheric
GCM using the full set of primitive equations.50,51

From then on, GFDL treated the primitive-equation
GCM as a conceptual framework that also drove work
on simpler models, such as the RCMs discussed above,
which they then used to improve the GCM’s handling
of physical processes. Strict attention to developing
physical theory and numerical methods before seek-
ing verisimilitude became a hallmark of the GFDL
modeling approach32 (Edwards interviews).

Smagorinsky foresaw the need to couple ocean
circulation models to atmospheric GCMs to achieve
realistic climate simulations. In 1961 he brought
ocean modeler Kirk Bryan to GFDL.52 The first
GFDL coupled model used a highly simplified 1-layer
‘swamp’ ocean. However, the oceans have their
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Figure 3. Dennard scaling tails off at the end of four decades of microprocessor miniaturization. From 42 Years of

Microprocessor Trend Data, courtesy Karl Rupp.

obtain in establishing a model’s predictive skill by running a suite of retrospective hindcasts.
Furthermore, the model studied in [47] has vastly less complexity (defined in [49] as the number
of distinct physical variables simulated by a model) than a typical workhorse model. It is clear
that the additional of detail, in resolution and complexity, to models cannot continue as before. A
fundamental rethinking of the decades-long climb up the Charney ladder is long overdue.

Just around the time the state of play in climate computing was reviewed in [38], the contours
of the revival of machine learning (ML) using artificial neural networks (ANNs) were beginning
to take shape. Deep learning (DL) using multiple neuronal layers were showing significant skill
in many domains. As noted in Section 1, ANNs existed alongside the physics-based models of
von Neumann and Charney for decades, but may have languished as the computing power and
parallelism were not available. The new processors emerging at the right of Fig. 3 in the twilight
of Dennard scaling, are ideally suited to ML: the typical DL computation consists of dense linear
algebra, scalable almost at will, able to reduce memory bandwidth at reduced precision without
loss of performance. Processors such as the Graphical Processing Unit (GPU) and most especially
the TPU (tensor processing unit) showed themselves capable of running a typical DL workload
at close to the theoretical maximum performance of the chip [50]. There are many challenges to
executing conventional equation-based arithmetic on these chips, not least of which is their low
precision, often as low as 3 digits, the same as for the manual arithmetic that limited Bjerknes,
see Section 2. While continuing to explore low-precision arithmetic (e.g [51]), we have begun to
explore ML itself in the arsenal of Earth system modeling. We turn now in Section 4 to an assess
the potential of ML to show us a way out of the current computing impasse.

4. Learning physics from data
The articles in this special issue form a wide spectrum representing the state of the art in the use
of ML in Earth system science, and we do not propose to offer a broad or comprehensive review.
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