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1850-2021 (Ed Hawkins “Warming stripes”)



Increasing resolution

graphics from 4th IPCC report (2007)



Increasing process complexity
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Better prediction:
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1. Scaling computational performance

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance A
(SpecINT x 107)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

1
'
|

v E
------------ L EEEE SERRRERER ZRRRR 2 SR ARR R R 2 R X

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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Uncertainty / error vs. expense

Hillman et al. 2020
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Solution: Data-driven subgrid closures

Hidden
Input .
CNN model .V' OCUtpj Explainability?
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2. Scaling collaborations

The Two Complexities

Accidental

Inherent
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Solution: Software engineering tools & techniques

Processes Version control Build systems
AGILE & public curators & containers
ACMake *
docker
Debugging Profiling Testing and verification

CamFort
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3. Scaling communication
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Abstract

There has been much recent interest in developing data-driven models for weather and climate predictions. However,
there are open questions regarding their generalizability and robustness, highlighting a need to better understand how
they make their predictions. In particular, it is important to understand whether data-driven models learn the
underlying physics of the system against which they are trained, or simply identify statistical patterns without any
clear link to the underlying physics. In this paper, we describe a sensitivity analysis of a regression-based model of
ocean temperature, trained against simulations from a 3D ocean model setup in a very simple configuration. We show
that the regressor heavily bases its forecasts on, and is dependent on, variables known to be key to the physics such as
currents and density. By contrast, the regressor does not make heavy use of inputs such as location, which have limited
direct physical impacts. The model requires nonlinear interactions between inputs in order to show any meaningful
skill—in line with the highly nonlinear dynamics of the ocean. Further analysis interprets the ways certain variables
are used by the regression model. We see that information about the vertical profile of the water column reduces errors
in regions of convective activity, and information about the currents reduces errors in regions dominated by advective
processes. Our results demonstrate that even a simple regression model is capable of learning much of the physics of
the system being modeled. We expect that a similar sensitivity analysis could be usefully applied to more complex
ocean configurations.

Impact Statement

Machine learning provides a promising tool for weather and climate forecasting. However, for data-driven
forecast models to eventually be used in operational settings we need to not just be assured of their ability to
perform well, but also to understand the ways in which these models are working, to build trust in these
systems. We use a variety of model interpretation techniques to investigate how a simple regression model
makes its predictions. We find that the model studied here, behaves in agreement with the known physics of
the system. This works shows that data-driven models are capable of learning meaningful physics-based
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module simulation_mod
use helpers_mod
implicit none

contains

subroutine compute_tentative_velocity(u, v, f, g, flag, del_t)

real u(@:imax+1, @:jmax+1), v(@:imax+1, 0:jmax+1l), f(0:imax+1l, @:jmax+1),

g(0:imax+1, @:jmax+1)
integer flag(@:imax+1, @:jmax+1)
real, intent(in) :: del_t

integer i, j
real du2dx, duvdy, duvdx, dv2dy, laplu, laplv

do i =1, (imax-1)
do j = 1, jmax
! only if both adjacent cells are fluid cells x/
if (toLogical(iand(flag(i,j), C_F)) .and.
toLogical(iand(flag(i+1,j), C_F))) then

du2dx = ((u(i,j)+u(i+1,j))*(u(i,j)+u(i+1,j))+
gammaxabs (u(i,j)+u(i+l,j))*(u(i,j)-u(i+l,j))-
(u(i-1,j)+u(i,j))*(u(i-1,j)+u(i,j))-
gammaxabs (u(i-1,j)+u(i,j))*(u(i-1,j)-u(i,j)))
/(4.0%xdelx)
duvdy = ((v(i,j)+v(i+1,j))*(u(i,j)+u(i,j+1))+
gammaxabs(v(i,j)+v(i+1,j))*(u(i,j)-u(di,j+1))-
(v(i,j=1)+v(i+1,j-1))*(u(i,j-1)+u(i,j))-
gammaxabs(v(i,j-1)+v(i+1,j-1))*(u(i,j-1)-u(i,j)))
/(4.0xdely)
laplu = (u(i+1,j)-2.0%u(i,j)+u(i-1,j))/delx/delx+
(u(i,j+1)-2.0%u(i,j)+u(i,j-1))/dely/dely
f(i,j) = u(i,j) + del_t*(laplu/Re-du2dx-duvdy)
else
f(1i,j) = u(i,j)
end if
end do
end do
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3. Challenge: conflation of concerns in code

Abstract model Solution strategy  Prediction calculation

papers

programs
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3. Challenge: conflation of concerns in code

 Extra technical documentation
» Clear systems design
- High modularity

But language support possible: more research needed

ls a future language tailored to science possible?

programs
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https://www.schmidtfutures.com/our-work/virtual-earth-system-research-institute-vesri/

SCHMIDT FUTURES Our Mission Our Work Our People

Home | Our Work | Virtual Earth...

Virtual Earth System Research
Institute (VESRI)

VESRI aims to improve the accuracy and credibility of major climate models by
addressing some of the hardest problems that challenge them.
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Postdoctoral
Advanced Fellowships

Laura Cimoli

2x more hiring

Research Software Engineers
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More on the way...
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YW @Cambridge ICCS

 https://cambridage-iccs.aithub.io


https://cambridge-iccs.github.io
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